Back to Search Start Over

Study of Gravelly Soil Core Material Using a Large-Scale Triaxial Wetting Test.

Authors :
Qin, Yuyang
Li, Guoying
Mi, Zhankuan
Fan, Kaifang
Source :
Applied Sciences (2076-3417); Dec2023, Vol. 13 Issue 24, p13295, 12p
Publication Year :
2023

Abstract

Wetting deformation has a significant impact on dam safety, and is one of the leading causes of the long-term deformation of dams. For dams to operate safely, it is crucial to precisely estimate the extent of wetting deformation using a reasonable calculation model. This study describes the wetting deformation behavior of gravelly soil core material observed at a hydropower station using a large-scale triaxial wetting test, and the process, characteristics, and mechanism of the wetting deformation are analyzed. The results show that the direction of the wetting deformation exhibits different behaviors influenced by the stress levels. Compared with the significant changes in the wetting direction observed under low stress levels, the changes in the wetting direction under high stress levels appears to lag behind those in wetting deformation. The source of wetting deformation is thought to be the weakening of a material when it encounters water. Thus, a new calculation model of the wetting deformation of gravelly soil core material is proposed. In this model, the wetting strain ratio is in an exponential relationship with the stress levels, and the new model is used to simulate the triaxial wetting test on the gravelly soil core material; its validity and practicability are further evaluated, providing a new computational approach for analyzing the wetting deformation behavior of dams. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20763417
Volume :
13
Issue :
24
Database :
Complementary Index
Journal :
Applied Sciences (2076-3417)
Publication Type :
Academic Journal
Accession number :
174404400
Full Text :
https://doi.org/10.3390/app132413295