Back to Search Start Over

Advances of Electrochemical and Electrochemiluminescent Sensors Based on Covalent Organic Frameworks.

Authors :
Cao, Yue
Wu, Ru
Gao, Yan-Yan
Zhou, Yang
Zhu, Jun-Jie
Source :
Nano-Micro Letters; 11/30/2023, Vol. 16 Issue 1, p1-28, 28p
Publication Year :
2023

Abstract

Highlights: Covalent organic frameworks (COFs) show enormous potential for building high-performance electrochemical sensors due to their high porosity, large specific surface areas, stable rigid topology, ordered structures, and tunable pore microenvironments. The basic properties, monomers, and general synthesis methods of COFs in the electroanalytical chemistry field are introduced, with special emphasis on their usages in the fabrication of chemical sensors, ions sensors, immunosensors, and aptasensors. The emerged COFs in the electrochemiluminescence realm are thoroughly covered along with their preliminary applications. Covalent organic frameworks (COFs), a rapidly developing category of crystalline conjugated organic polymers, possess highly ordered structures, large specific surface areas, stable chemical properties, and tunable pore microenvironments. Since the first report of boroxine/boronate ester-linked COFs in 2005, COFs have rapidly gained popularity, showing important application prospects in various fields, such as sensing, catalysis, separation, and energy storage. Among them, COFs-based electrochemical (EC) sensors with upgraded analytical performance are arousing extensive interest. In this review, therefore, we summarize the basic properties and the general synthesis methods of COFs used in the field of electroanalytical chemistry, with special emphasis on their usages in the fabrication of chemical sensors, ions sensors, immunosensors, and aptasensors. Notably, the emerged COFs in the electrochemiluminescence (ECL) realm are thoroughly covered along with their preliminary applications. Additionally, final conclusions on state-of-the-art COFs are provided in terms of EC and ECL sensors, as well as challenges and prospects for extending and improving the research and applications of COFs in electroanalytical chemistry. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
23116706
Volume :
16
Issue :
1
Database :
Complementary Index
Journal :
Nano-Micro Letters
Publication Type :
Academic Journal
Accession number :
174370974
Full Text :
https://doi.org/10.1007/s40820-023-01249-5