Back to Search
Start Over
Lipid fingerprint‐based histology accurately classifies nevus, primary melanoma, and metastatic melanoma samples.
- Source :
- International Journal of Cancer; Feb2024, Vol. 154 Issue 4, p712-722, 11p
- Publication Year :
- 2024
-
Abstract
- Probably, the most important factor for the survival of a melanoma patient is early detection and precise diagnosis. Although in most cases these tasks are readily carried out by pathologists and dermatologists, there are still difficult cases in which no consensus among experts is achieved. To deal with such cases, new methodologies are required. Following this motivation, we explore here the use of lipid imaging mass spectrometry as a complementary tool for the aid in the diagnosis. Thus, 53 samples (15 nevus, 24 primary melanomas, and 14 metastasis) were explored with the aid of a mass spectrometer, using negative polarity. The rich lipid fingerprint obtained from the samples allowed us to set up an artificial intelligence‐based classification model that achieved 100% of specificity and precision both in training and validation data sets. A deeper analysis of the image data shows that the technique reports important information on the tumor microenvironment that may give invaluable insights in the prognosis of the lesion, with the correct interpretation. [ABSTRACT FROM AUTHOR]
- Subjects :
- ARTIFICIAL intelligence
NEVUS
MELANOMA
MASS spectrometers
HISTOLOGY
LIPIDS
Subjects
Details
- Language :
- English
- ISSN :
- 00207136
- Volume :
- 154
- Issue :
- 4
- Database :
- Complementary Index
- Journal :
- International Journal of Cancer
- Publication Type :
- Academic Journal
- Accession number :
- 174325553
- Full Text :
- https://doi.org/10.1002/ijc.34800