Back to Search Start Over

A Cytochrome b561 with Ferric Reductase Activity from the Parasitic Blood Fluke, Schistosoma japonicum.

Authors :
Glanfield, Amber
McManus, Donald P.
Smyth, Danielle J.
Lovas, Erica M.
Loukas, Alex
Gobert, Geoffrey N.
Jones, Malcolm K.
Source :
PLoS Neglected Tropical Diseases; 11/16/2010, Vol. 4 Issue 11, p1-11, 11p
Publication Year :
2010

Abstract

Background: Iron has an integral role in numerous cellular reactions and is required by virtually all organisms. In physiological conditions, iron is abundant in a largely insoluble ferric state. Ferric reductases are an essential component of iron uptake by cells, reducing iron to the soluble ferrous form. Cytochromes b561 (cyts-b561) are a family of ascorbate reducing transmembrane proteins found in most eukaryotic cells. The identification of the ferric reductase duodenal cytochrome b (dcytb) and recent observations that other cyts-b561 may be involved in iron metabolism have opened novel perspectives for elucidating their physiological function. Methodology/Principal Findings: Here we have identified a new member of the cytochrome b561 (Sjcytb561) family in the pathogenic blood fluke Schistosoma japonicum that localises to the outer surface of this parasitic trematode. Heterologous expression of recombinant Sjcyt-b561 in a Saccharomyces cerevisiae mutant strain that lacks plasma membrane ferrireductase activity demonstrated that the molecule could rescue ferric reductase activity in the yeast. Significance/Conclusions: This finding of a new member of the cytochrome b561 family further supports the notion that a ferric reductase function is likely for other members of this protein family. Additionally, the localisation of Sjcytb561 in the surface epithelium of these blood-dwelling schistosomes contributes further to our knowledge concerning nutrient acquisition in these parasites and may provide novel targets for therapeutic intervention. Author Summary: Parasites acquire their food from their hosts, either by feeding directly on tissues of the host, or by competing for ingested food. Adult schistosomes live within the vasculature of humans and rely on the blood cells and plasma they ingest and dissolved solutes they derive across their body surface, the tegument, for their nutrition. Schistosomes require host trace elements, notably iron, which is used as a co-factor in many biological reactions. Iron is especially important for schistosomes, for it has a significant role in egg formation and embryogenesis. In human tissues, iron predominates in the trivalent (ferric) form; however, it is the divalent (ferrous) form that is used as an essential co-factor for multiple biomolecules and enzymes. In order to be acquired from the host environment, the valency of iron must be modified to render it suitable for transport across the parasite membrane. This paper describes the molecular characterisation of a schistosome molecule that is crucial for bringing about this change in iron. Schistosoma japonicum Cytb561 is the first ferric reductase characterised in any parasitic helminth and emphasises the importance of iron, and other divalent cations, in these organisms. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19352727
Volume :
4
Issue :
11
Database :
Complementary Index
Journal :
PLoS Neglected Tropical Diseases
Publication Type :
Academic Journal
Accession number :
174305455
Full Text :
https://doi.org/10.1371/journal.pntd.0000884