Back to Search Start Over

Deciphering the Growth Behaviour of Mycobacterium africanum.

Authors :
Gehre, Florian
Otu, Jacob
DeRiemer, Kathryn
de Sessions, Paola Florez
Hibberd, Martin L.
Mulders, Wim
Corrah, Tumani
de Jong, Bouke C.
Antonio, Martin
Source :
PLoS Neglected Tropical Diseases; 5/16/2013, Vol. 7 Issue 5, p1-10, 10p, 3 Diagrams, 3 Charts, 2 Graphs
Publication Year :
2013

Abstract

Background: Human tuberculosis (TB) in West Africa is not only caused by M. tuberculosis but also by bacteria of the two lineages of M. africanum. For instance, in The Gambia, 40% of TB is due to infections with M. africanum West African 2. This bacterial lineage is associated with HIV infection, reduced ESAT-6 immunogenicity and slower progression to active disease. Although these characteristics suggest an attenuated phenotype of M. africanum, no underlying mechanism has been described. From the first descriptions of M. africanum in the literature in 1969, the time to a positive culture of M. africanum on solid medium was known to be longer than the time to a positive culture of M. tuberculosis. However, the delayed growth of M. africanum, which may correlate with the less virulent phenotype in the human host, has not previously been studied in detail. Methodology/Principal Findings: We compared the growth rates of M. tuberculosis and M. africanum isolates from The Gambia in two liquid culture systems. M. africanum grows significantly slower than M. tuberculosis, not only when grown directly from sputa, but also in growth experiments under defined laboratory conditions. We also sequenced four M. africanum isolates and compared their whole genomes with the published M. tuberculosis H37Rv genome. M. africanum strains have several non-synonymous SNPs or frameshift mutations in genes that were previously associated with growth-attenuation. M. africanum strains also have a higher mutation frequency in genes crucial for transport of sulphur, ions and lipids/fatty acids across the cell membrane into the bacterial cell. Surprisingly, 5 of 7 operons, recently described as essential for intracellular survival of H37Rv in the host macrophage, showed at least one non-synonymously mutated gene in M. africanum. Conclusions/Significance: The altered growth behaviour of M. africanum might indicate a different survival strategy within host cells. Author Summary: Mycobacterium tuberculosis and Mycobacterium africanum are the two major lineages within the M. tuberculosis complex that cause human tuberculosis in West Africa. Despite being closely related, the outcome after infection differs between these two pathogens. Although M. africanum has not yet been studied to the same extent as M. tuberculosis, M. africanum is less likely to stimulate the host immune system or to progress to active disease. We hypothesized that this somewhat attenuated phenotype is due to the slower growth of M. africanum within the host. Therefore, we analysed clinical isolates from 522 patients with tuberculosis in The Gambia. M. africanum West Africa 2 strains grew more slowly than M. tuberculosis. We sequenced four M. africanum strains and identified several candidate genes that may cause the growth-attenuation of the bacteria. Describing the fundamental genomic and phenotypic differences between M. tuberculosis and M. africanum will enable us to better understand the virulence mechanisms that make M. tuberculosis one of the most successful bacterial pathogens, and to discover potential strategies to interfere with mycobacterial pathogenicity. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19352727
Volume :
7
Issue :
5
Database :
Complementary Index
Journal :
PLoS Neglected Tropical Diseases
Publication Type :
Academic Journal
Accession number :
174304700
Full Text :
https://doi.org/10.1371/journal.pntd.0002220