Back to Search Start Over

A Novel Hyaluronidase from Brown Spider (Loxosceles intermedia) Venom (Dietrich's Hyaluronidase): From Cloning to Functional Characterization.

Authors :
Ferrer, Valéria Pereira
de Mari, Thiago Lopes
Gremski, Luiza Helena
Trevisan Silva, Dilza
da Silveira, Rafael Bertoni
Gremski, Waldemiro
Chaim, Olga Meiri
Senff-Ribeiro, Andrea
Nader, Helena Bonciani
Veiga, Silvio Sanches
Source :
PLoS Neglected Tropical Diseases; 5/2/2013, Vol. 7 Issue 5, p1-12, 12p, 2 Color Photographs, 3 Black and White Photographs, 2 Diagrams
Publication Year :
2013

Abstract

Loxoscelism is the designation given to clinical symptoms evoked by Loxosceles spider's bites. Clinical manifestations include skin necrosis with gravitational spreading and systemic disturbs. The venom contains several enzymatic toxins. Herein, we describe the cloning, expression, refolding and biological evaluation of a novel brown spider protein characterized as a hyaluronidase. Employing a venom gland cDNA library, we cloned a hyaluronidase (1200 bp cDNA) that encodes for a signal peptide and a mature protein. Amino acid alignment revealed a structural relationship with members of hyaluronidase family, such as scorpion and snake species. Recombinant hyaluronidase was expressed as N-terminal His-tag fusion protein (∼45 kDa) in inclusion bodies and activity was achieved using refolding. Immunoblot analysis showed that antibodies that recognize the recombinant protein cross-reacted with hyaluronidase from whole venom as well as an anti-venom serum reacted with recombinant protein. Recombinant hyaluronidase was able to degrade purified hyaluronic acid (HA) and chondroitin sulfate (CS), while dermatan sulfate (DS) and heparan sulfate (HS) were not affected. Zymograph experiments resulted in ∼45 kDa lytic zones in hyaluronic acid (HA) and chondroitin sulfate (CS) substrates. Through in vivo experiments of dermonecrosis using rabbit skin, the recombinant hyaluronidase was shown to increase the dermonecrotic effect produced by recombinant dermonecrotic toxin from L. intermedia venom (LiRecDT1). These data support the hypothesis that hyaluronidase is a "spreading factor". Recombinant hyaluronidase provides a useful tool for biotechnological ends. We propose the name Dietrich's Hyaluronidase for this enzyme, in honor of Professor Carl Peter von Dietrich, who dedicated his life to studying proteoglycans and glycosaminoglycans. Author Summary: Accidents involving brown spiders (Loxosceles genus) are reported throughout the world. South and Southeast of Brazil are endemic areas for this spider. Loxosceles bites commonly trigger local signs as swelling, erythema, hemorrhage and the hallmark symptom: a dermonecrotic lesion with gravitational spreading. Systemic effects are less common; however, are implicated in more severe cases. Hyaluronidases are referred in several venoms as "spreading factors" due to their enzymatic activity upon extracellular components. This activity facilitates the permeation of other toxins through the victim's body. In fact, a previous study identified the activity of L. intermedia venom upon glycosaminoglycans which are abundant components in the extracellular matrix of many tissues. Disclosing a little more about the role of hyaluronidases within this venom, we investigated the activities of a recombinant hyaluronidase from L. intermedia venom. Dietrich's hyaluronidase, as it was designated, was produced as a recombinant protein. By performing a rabbit skin dermonecrosis assay using Dietrich's Hyaluronidase and a dermonecrotic toxin, we showed that Dietrich's Hyaluronidase increased the dermonecrotic area induced by the dermonecrotic toxin. Our results confirm that hyaluronidases are a "spreading factor" of L. intermedia venom. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19352727
Volume :
7
Issue :
5
Database :
Complementary Index
Journal :
PLoS Neglected Tropical Diseases
Publication Type :
Academic Journal
Accession number :
174304660
Full Text :
https://doi.org/10.1371/journal.pntd.0002206