Back to Search Start Over

How frictional slip evolves.

Authors :
Shi, Songlin
Wang, Meng
Poles, Yonatan
Fineberg, Jay
Source :
Nature Communications; 12/14/2023, Vol. 14 Issue 1, p1-10, 10p
Publication Year :
2023

Abstract

Earthquake-like ruptures break the contacts that form the frictional interface separating contacting bodies and mediate the onset of frictional motion (stick-slip). The slip (motion) of the interface immediately resulting from the rupture that initiates each stick-slip event is generally much smaller than the total slip logged over the duration of the event. Slip after the onset of friction is generally attributed to continuous motion globally attributed to 'dynamic friction'. Here we show, by means of direct measurements of real contact area and slip at the frictional interface, that sequences of myriad hitherto invisible, secondary ruptures are triggered immediately in the wake of each initial rupture. Each secondary rupture generates incremental slip that, when not resolved, may appear as steady sliding of the interface. Each slip increment is linked, via fracture mechanics, to corresponding variations of contact area and local strain. Only by accounting for the contributions of these secondary ruptures can the accumulated interface slip be described. These results have important ramifications both to our fundamental understanding of frictional motion as well as to the essential role of aftershocks within natural faults in generating earthquake-mediated slip. Conventionally, a continuous motion or "dynamic friction" is expected to take place after the initial rupture under friction. Here, the authors perform direct measurement of real contact and slip at the frictional interface and show that the secondary rupture takes place after each initial rupture. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20411723
Volume :
14
Issue :
1
Database :
Complementary Index
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
174257012
Full Text :
https://doi.org/10.1038/s41467-023-44086-1