Back to Search Start Over

miR-107 Attenuates Sepsis-Induced Myocardial Injury by Targeting PTEN and Activating the PI3K/AKT Signaling Pathway.

Authors :
Zhang, Lin
Li, Bin
Li, Wei
Jiang, Jingbo
Chen, Wei
Yang, Huayun
Pan, Diguang
Source :
Cells Tissues Organs; 2023, Vol. 212 Issue 6, p523-534, 12p
Publication Year :
2023

Abstract

Sepsis is a public health problem worldwide. This study investigated the mechanism of miR-107 on sepsis-induced myocardial injury. Sepsis rat models were established by cecal ligation and puncture (CLP), and the cell model was established using lipopolysaccharide (LPS)-induced cardiomyocytes. Cardiac function indexes of rats were measured using echocardiography. Pathological changes in the rat myocardium were observed using histological staining. Expression of miR-107 in the serum of rats and in cardiomyocytes was detected after the treatment with miR-107 mimic and/or pcDNA3.1-PTEN, followed by assessment of cell cycle, proliferation, and apoptosis. Binding sites of miR-107 and PTEN were predicted. PTEN, PI3K, p-PI3K, AKT, and p-AKT levels in LPS-induced cardiomyocytes were measured. miR-107 was significantly downregulated in the serum of CLP rats and LPS-induced cardiomyocytes. miR-107 overexpression remarkably improved cardiac function and histological changes, decreased inflammatory factors, and alleviated the sepsis-induced myocardial injury in rats. In LPS-induced cardiomyocytes, miR-107 overexpression increased cardiomyocyte proliferation, inhibited apoptosis, and enhanced the proportion of cardiomyocytes arrested in S and G2/M phases. miR-107 targeted PTEN. PTEN overexpression partially reversed the inhibition of miR-107 mimic on cardiomyocyte apoptosis. miR-107 overexpression activated the PI3K/AKT pathway by inhibiting PTEN. To conclude, miR-107 activates the PI3K/AKT pathway by inhibiting PTEN, thus attenuating sepsis-induced myocardial injury and LPS-induced cardiomyocyte apoptosis. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14226405
Volume :
212
Issue :
6
Database :
Complementary Index
Journal :
Cells Tissues Organs
Publication Type :
Academic Journal
Accession number :
174239805
Full Text :
https://doi.org/10.1159/000525476