Back to Search Start Over

SIMPD: an algorithm for generating simulated time splits for validating machine learning approaches.

Authors :
Landrum, Gregory A.
Beckers, Maximilian
Lanini, Jessica
Schneider, Nadine
Stiefl, Nikolaus
Riniker, Sereina
Source :
Journal of Cheminformatics; 12/11/2023, Vol. 15 Issue 1, p1-16, 16p
Publication Year :
2023

Abstract

Time-split cross-validation is broadly recognized as the gold standard for validating predictive models intended for use in medicinal chemistry projects. Unfortunately this type of data is not broadly available outside of large pharmaceutical research organizations. Here we introduce the SIMPD (simulated medicinal chemistry project data) algorithm to split public data sets into training and test sets that mimic the differences observed in real-world medicinal chemistry project data sets. SIMPD uses a multi-objective genetic algorithm with objectives derived from an extensive analysis of the differences between early and late compounds in more than 130 lead-optimization projects run within the Novartis Institutes for BioMedical Research. Applying SIMPD to the real-world data sets produced training/test splits which more accurately reflect the differences in properties and machine-learning performance observed for temporal splits than other standard approaches like random or neighbor splits. We applied the SIMPD algorithm to bioactivity data extracted from ChEMBL and created 99 public data sets which can be used for validating machine-learning models intended for use in the setting of a medicinal chemistry project. The SIMPD code and simulated data sets are available under open-source/open-data licenses at github.com/rinikerlab/molecular_time_series. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
17582946
Volume :
15
Issue :
1
Database :
Complementary Index
Journal :
Journal of Cheminformatics
Publication Type :
Academic Journal
Accession number :
174163474
Full Text :
https://doi.org/10.1186/s13321-023-00787-9