Back to Search Start Over

Tolerable treatment of glioblastoma with redox-cycling 'mitocans': a comparative study in vivo.

Authors :
Sumiyoshi, Akira
Shibata, Sayaka
Lazarova, Dessislava
Zhelev, Zhivko
Aoki, Ichio
Bakalova, Rumiana
Source :
Redox Report; Dec2023, Vol. 28 Issue 1, p1-9, 9p
Publication Year :
2023

Abstract

Objectives: The present study describes a pharmacological strategy for the treatment of glioblastoma by redoxcycling 'mitocans' such as quinone/ascorbate combination drugs, based on their tumor-selective redox-modulating effects and tolerance to normal cells and tissues. Methods: Experiments were performed on glioblastoma mice (orthotopic model) treated with coenzyme Q0/ascorbate (Q0/A). The drug was injected intracranially in a single dose. The following parameters were analyzed in vivo using MRI orex vivo using conventional assays: tumor growth, survival, cerebral and tumor perfusion, tumor cell density, tissue redox-state, and expression of tumor-associated NADH oxidase (tNOX). Results: Q0/A markedly suppressed tumor growth and significantly increased survival of glioblastoma mice. This was accompanied by increased oxidative stress in the tumor but not in non-cancerous tissues, increased tumor blood flow, and downregulation of tNOX. The redox-modulating and anticancer effects of Q0/A were more pronounced than those of menadione/ascorbate (M/A) obtained in our previous study. No adverse drug-related side-effects were observed in glioblastoma mice treated with Q0/A. Discussion: Q0/A differentiated cancer cells and tissues, particularly glioblastoma, from normal ones by redox targeting, causing a severe oxidative stress in the tumor but not in non-cancerous tissues. Q0/A had a pronounced anticancer activity and could be considered safe for the organism within certain concentration limits. The results suggest that the rate of tumor resorption and metabolism of toxic residues must be controlled and maintained within tolerable limits to achieve longer survival, especially at intracranial drug administration. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
13510002
Volume :
28
Issue :
1
Database :
Complementary Index
Journal :
Redox Report
Publication Type :
Academic Journal
Accession number :
174101571
Full Text :
https://doi.org/10.1080/13510002.2023.2220531