Back to Search Start Over

Cell‐type‐specific tumour sensitivity identified with a bromodomain targeting PROTAC in adenoid cystic carcinoma.

Authors :
Rose, Alexandra J
Fleming, Mercedes M
Francis, Jeffrey C
Ning, Jian
Patrikeev, Anton
Chauhan, Ritika
Harrington, Kevin J
Swain, Amanda
Source :
Journal of Pathology; Jan2024, Vol. 262 Issue 1, p37-49, 13p
Publication Year :
2024

Abstract

Salivary gland adenoid cystic carcinoma (ACC) is a rare malignancy with limited treatment options. The development of novel therapies is hindered by a lack of preclinical models. We have generated ACC patient‐derived xenograft (PDX) lines that retain the physical and genetic properties of the original tumours, including the presence of the common MYB::NFIB or MYBL1::NFIB translocations. We have developed the conditions for the generation of both 2D and 3D tumour organoid patient‐derived ACC models that retain MYB expression and can be used for drug studies. Using these models, we show in vitro and in vivo sensitivity of ACC cells to the bromodomain degrader, dBET6. Molecular studies show a decrease in BRD4 and MYB protein levels and target gene expression with treatment. The most prominent effect of dBET6 on tumours in vivo was a change in the relative composition of ACC cell types expressing either myoepithelial or ductal markers. We show that dBET6 inhibits the progenitor function of ACC cells, particularly in the myoepithelial marker‐expressing population, revealing a cell‐type‐specific sensitivity. These studies uncover a novel mechanistic effect of bromodomain inhibitors on tumours and highlight the need to impact both cell‐type populations for more effective treatments in ACC patients. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00223417
Volume :
262
Issue :
1
Database :
Complementary Index
Journal :
Journal of Pathology
Publication Type :
Academic Journal
Accession number :
174030696
Full Text :
https://doi.org/10.1002/path.6209