Back to Search
Start Over
Spontaneous pattern of orthogonal ferroelectric domains in epitaxial KNN films.
- Source :
- Journal of Applied Physics; 11/28/2023, Vol. 134 Issue 20, p1-12, 12p
- Publication Year :
- 2023
-
Abstract
- Lead-free piezoelectric (K, Na)NbO<subscript>3</subscript> (KNN) is considered one of the promising candidates for the replacement of Pb(Zr<subscript>x</subscript>Ti<subscript>1−x</subscript>)O<subscript>3</subscript>. Several studies underlined the issue of K and Na volatility with increasing deposition temperatures, leading to high leakage currents in thin films, which still represents a major drawback for applications. This paper shows how epitaxial growth with concomitant preferred orientation of KNN films on niobium-doped strontium titanate (Nb:STO) depends on growth temperature and substrate strain. A preferred out-of-plane polar (001) orientation of KNN is obtained at high temperatures (>600 °C), while (100) orientation is dominant for lower ones. The (001) orientation is forced out-of-plane due to the sizeable in-plane stress derived from a negative lattice mismatch of pseudo-cubic KNN with respect to the underlying cubic (001) Nb:STO substrate. Moreover, we show that K-Na deficiency and high leakage of epitaxial KNN films deposited at high temperatures are accompanied by the appearance of a pattern of orthogonal spontaneous ferroelectric domains aligned to the [100] and [010] directions of Nb:STO. This pattern, visible in secondary electron microscopy, piezoforce response microscopy, and conductive atomic force microscopy images, is uncorrelated to the surface morphology. Supported by reciprocal space mapping by x-ray diffraction, this phenomenon is interpreted as the result of strain relaxation via ferroelectric domain formation related to K-Na deficient films displaying a sizable and increasing compressive strain when grown on Nb:SrTiO<subscript>3</subscript>. Our findings suggest that strain engineering strategies in thin films could be used to stabilize specific configurations of piezo- and ferroelectric domains. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00218979
- Volume :
- 134
- Issue :
- 20
- Database :
- Complementary Index
- Journal :
- Journal of Applied Physics
- Publication Type :
- Academic Journal
- Accession number :
- 173977718
- Full Text :
- https://doi.org/10.1063/5.0171349