Back to Search Start Over

Ant colony optimization-based adjusted PID parameters: a proposed method.

Authors :
Long Wang
Yiqun Luo
Hongyan Yan
Source :
PeerJ Computer Science; Nov2023, p1-17, 17p
Publication Year :
2023

Abstract

The ant colony algorithm (ACA) is a heuristic algorithm that resolves the optimality problem by simulating an ant's foraging process, which finds the shortest path. The connotation of the ACA is to find the optimal solution. The Proportional Integral Derivative (PID) parameter tuning is an essential tool in the control field and includes three parameters, Kp, Ki, and Kd, to achieve the best control effect. Besides, tuning the PID parameters is closely related to finding the "optimal" solution that can be attained based on the feasible combination of the two. This article transforms the PID parameter tuning problem into an ACA that finds the optimal solution called ACA-based PID parameters tuning. Furthermore, PID control is simulated by setting the parameters of ACA, such as ant colony size, iteration times, nodes, paths, path evaluation criteria, pheromone concentration, heuristic function, weight factor, and decision function. Eventually, the two PID controller parameter tuning strategies are compared and analyzed, and the advantages and disadvantages of each are obtained. Compared with the 4:1 attenuation curve method, the proposed method can significantly reduce the MP score of the overshoot of the system, increase the time, and improve the dynamic and steady-state performance of the system, but reduce the steady-state error of the system. Therefore, the feasibility and effectiveness of the proposed method is verified. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
23765992
Database :
Complementary Index
Journal :
PeerJ Computer Science
Publication Type :
Academic Journal
Accession number :
173956033
Full Text :
https://doi.org/10.7717/peerj-cs.1660