Back to Search Start Over

Robust Email Spam Filtering Using a Hybrid of Grey Wolf Optimiser and Naive Bayes Classifier.

Authors :
Zraqou, Jamal
Al-Helali, Adnan H.
Maqableh, Waleed
Fakhouri, Hussam
Alkhadour, Wesam
Source :
Cybernetics & Information Technologies; 2023, Vol. 23 Issue 4, p79-90, 12p
Publication Year :
2023

Abstract

Effective spam filtering plays a crucial role in enhancing user experience by sparing them from unwanted messages. This imperative underscores the importance of safeguarding email systems, prompting scholars across diverse fields to delve deeper into this subject. The primary objective of this research is to mitigate the disruptive effects of spam on email usage by introducing improved security measures compared to existing methods. This goal can be accomplished through the development of a novel spam filtering technique designed to prevent spam from infiltrating users' inboxes. Consequently, a hybrid filtering approach that combines an information gain philter and a Wrapper Grey Wolf Optimizer feature selection algorithm with a Naive Bayes Classifier, is proposed, denoted as GWO-NBC. This research is rigorously tested using the WEKA software and the SPAMBASE dataset. Thorough performance evaluations demonstrated that the proposed approach surpasses existing solutions in terms of both security and accuracy. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
13119702
Volume :
23
Issue :
4
Database :
Complementary Index
Journal :
Cybernetics & Information Technologies
Publication Type :
Academic Journal
Accession number :
173930019
Full Text :
https://doi.org/10.2478/cait-2023-0037