Back to Search
Start Over
HDAC8-mediated inhibition of EP300 drives a transcriptional state that increases melanoma brain metastasis.
- Source :
- Nature Communications; 11/29/2023, Vol. 14 Issue 1, p1-18, 18p
- Publication Year :
- 2023
-
Abstract
- Melanomas can adopt multiple transcriptional states. Little is known about the epigenetic drivers of these cell states, limiting our ability to regulate melanoma heterogeneity. Here, we identify stress-induced HDAC8 activity as driving melanoma brain metastasis development. Exposure of melanocytes and melanoma cells to multiple stresses increases HDAC8 activation leading to a neural crest-stem cell transcriptional state and an amoeboid, invasive phenotype that increases seeding to the brain. Using ATAC-Seq and ChIP-Seq we show that increased HDAC8 activity alters chromatin structure by increasing H3K27ac and enhancing accessibility at c-Jun binding sites. Functionally, HDAC8 deacetylates the histone acetyltransferase EP300, causing its enzymatic inactivation. This, in turn, increases binding of EP300 to Jun-transcriptional sites and decreases binding to MITF-transcriptional sites. Inhibition of EP300 increases melanoma cell invasion, resistance to stress and increases melanoma brain metastasis development. HDAC8 is identified as a mediator of transcriptional co-factor inactivation and chromatin accessibility that drives brain metastasis. The drivers of melanoma brain metastases (MBM) remain poorly understood. Here, the authors identify stress-induced HDAC8 activity as the driver of a neural crest-stem cell like transcriptional state that leads to MBM, and explore the molecular mechanism that drives this transition. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 20411723
- Volume :
- 14
- Issue :
- 1
- Database :
- Complementary Index
- Journal :
- Nature Communications
- Publication Type :
- Academic Journal
- Accession number :
- 173925412
- Full Text :
- https://doi.org/10.1038/s41467-023-43519-1