Back to Search
Start Over
Volatile oxidation products and secondary organosiloxane aerosol from D5 + OH at varying OH exposures.
- Source :
- Atmospheric Chemistry & Physics; 2023, Vol. 23 Issue 22, p14307-14323, 17p
- Publication Year :
- 2023
-
Abstract
- Siloxanes are composed of silicon, oxygen, and alkyl groups and are emitted from consumer chemicals. Despite being entirely anthropogenic, siloxanes are being detected in remote regions and are ubiquitous in indoor and urban environments. Decamethylcyclopentasiloxane (D 5) is one of the most common cyclic congeners, and smog chamber and oxidation flow reactor (OFR) experiments have found D 5 + OH to form secondary organosiloxane aerosol (SOSiA). However, there is uncertainty about the reaction products and the reported SOSiA mass yields (YSOSiA) appear inconsistent. To quantify small volatile oxidation products (VOPs) and to consolidate the YSOSiA in the literature, we performed experiments using a potential aerosol mass OFR while varying D 5 concentration, humidity, and OH exposure (OH exp). We use a proton transfer reaction time-of-flight mass spectrometer to quantify D 5 , HCHO, and HCOOH and to detect other VOPs, which we tentatively identify as siloxanols and siloxanyl formates. We determine molar yields of HCHO and HCOOH between 52 %–211 % and 45 %–127 %, respectively. With particle size distributions measured with a scanning mobility particle sizer, we find YSOSiA to be < 10 % at OH exp < 1.3 × 10 11 s cm -3 and ∼ 20 % at OH exp , corresponding to that of the lifetime of D 5 at atmospheric OH concentrations. We also find that YSOSiA is dependent on both organic aerosol mass loading and OH exp. We use a kinetic box model of SOSiA formation and oxidative aging to explain the YSOSiA values found in this study and the literature. The model uses a volatility basis set (VBS) of the primary oxidation products as well as an aging rate coefficient in the gas phase, kage,gas , of 2.2×10-12 cm 3 s -1 and an effective aging rate coefficient in the particle phase, kage,particle , of 2.0 × 10 -12 cm 3 s -1. The combination of a primary VBS and OH-dependent oxidative aging predicts SOSiA formation much better than a standard-VBS parameterization that does not consider aging (root mean square error = 42.6 vs. 96.5). In the model, multi-generational aging of SOSiA products occurred predominantly in the particle phase. The need for an aging-dependent parameterization to accurately model SOSiA formation shows that concepts developed for secondary organic aerosol precursors, which can form low-volatile products at low OH exp , do not necessarily apply to D 5 + OH. The resulting yields of HCHO and HCOOH and the parameterization of YSOSiA may be used in larger-scale models to assess the implications of siloxanes for air quality. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 16807316
- Volume :
- 23
- Issue :
- 22
- Database :
- Complementary Index
- Journal :
- Atmospheric Chemistry & Physics
- Publication Type :
- Academic Journal
- Accession number :
- 173924845
- Full Text :
- https://doi.org/10.5194/acp-23-14307-2023