Back to Search Start Over

Retrieval of Aerosol Optical Properties via an All-Sky Imager and Machine Learning: Uncertainty in Direct Normal Irradiance Estimations.

Authors :
Logothetis, Stavros-Andreas
Giannaklis, Christos-Panagiotis
Salamalikis, Vasileios
Tzoumanikas, Panagiotis
Raptis, Panagiotis-Ioannis
Amiridis, Vassilis
Eleftheratos, Kostas
Kazantzidis, Andreas
Source :
Environmental Sciences Proceedings; 2023, Vol. 26, p1-6, 6p
Publication Year :
2023

Abstract

Quality-assured aerosol optical properties (AOP) with high spatiotemporal resolution are vital for the accurate estimation of direct aerosol radiative forcing and solar irradiance under clear skies. In this study, the sky information from an all-sky imager (ASI) is used with machine learning (ML) synergy to estimate aerosol optical depth (AOD) and the Angstrom Exponent (AE). The retrieved AODs (AE) revealed good accuracy, with a dispersion error lower than 0.07 (0.15). The retrieved ML AOPs are used to estimate the DNI by applying radiative transfer modeling. The estimated ML DNI calculations revealed adequate accuracy to reproduce reference measurements with relatively low uncertainties. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
26734931
Volume :
26
Database :
Complementary Index
Journal :
Environmental Sciences Proceedings
Publication Type :
Conference
Accession number :
173879499
Full Text :
https://doi.org/10.3390/environsciproc2023026133