Back to Search Start Over

Improvement of Water Vapor Permeability in Polypropylene Composite Films by the Synergy of Carbon Nanotubes and β-Nucleating Agents.

Authors :
Visvini, Glykeria A.
Mathioudakis, Georgios N.
Soto Beobide, Amaia
Piperigkou, Zoi
Giannakas, Aris E.
Messaritakis, Stavros
Sotiriou, Giannis
Voyiatzis, George A.
Source :
Polymers (20734360); Nov2023, Vol. 15 Issue 22, p4432, 18p
Publication Year :
2023

Abstract

A notable application of polymeric nanocomposites is the design of water vapor permeable (WVP) membranes. "Breathable" membranes can be created by the incorporation of micro/nanofillers, such as CaCO<subscript>3</subscript>, that interrupt the continuity of the polymeric phase and when subjected to additional uniaxial or biaxial stretching this process leads to the formation of micro/nanoporous structures. Among the candidate nanofillers, carbon nanotubes (CNTs) have demonstrated excellent intrinsic WVP properties. In this study, chemically modified MWCNTs with oligo olefin-type groups (MWCNT-g-PP) are incorporated by melt processes into a PP matrix; a β-nucleating agent (β-ΝA) is also added. The crystallization behavior of the nanocomposite films is evaluated by differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The WVP performance of the films is assessed via the "wet" cup method. The nanohybrid systems, incorporating both MWCNT-g-PP and β-NA, exhibit enhanced WVP compared to films containing only MWCNT-g-PP or β-NA. This improvement can be attributed to the significant increase in the growth of α-type crystals taking place at the edges of the CNTs. This increased crystal growth exerts a form of stress on the metastable β-phase, thereby expanding the initial microporosity. In parallel, the coexistence of the inherently water vapor-permeable CNTs, further enhances the water vapor permeability reaching a specific water vapor transmission rate (Sp.WVTR) of 5500 μm.g/m<superscript>2</superscript>.day in the hybrid composite compared to 1000 μm.g/m<superscript>2</superscript>.day in neat PP. Notably, the functionalized MWCNT-g-PP used as nanofiller in the preparation of the "breathable" PP films demonstrated no noteworthy cytotoxicity levels within the low concentration range used, an important factor in terms of sustainability. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20734360
Volume :
15
Issue :
22
Database :
Complementary Index
Journal :
Polymers (20734360)
Publication Type :
Academic Journal
Accession number :
173864903
Full Text :
https://doi.org/10.3390/polym15224432