Back to Search Start Over

Research on Financial Fraud Detection Models Integrating Multiple Relational Graphs.

Authors :
Li, Jianfeng
Yang, Dexiang
Source :
Systems; Nov2023, Vol. 11 Issue 11, p539, 16p
Publication Year :
2023

Abstract

The current fraud risk in digital finance is increasing year by year, and the mainstream solutions rely on the inherent characteristics of users, which makes it difficult to explain fraud behaviors and fraud behavior patterns are less researched. To address these problems, we propose an integrated multiple relational graphs fraud detection model Tri-RGCN-XGBoost, which analyzes the impact of user association patterns on fraud detection by mining the behavioral associations of users. The model builds a heterogeneous information network based on real transaction data, abstracts three types of bipartite graphs (user–device, user–merchant, and user–address), aggregates the information of the user's neighbor nodes under the three types of behavioral patterns, and integrates the graph convolution classification results under the three behavioral patterns with the XGBoost model to achieve fraudulent user detection with integrated multiple relational graphs. The results show that the performance of this model in fraud identification is significantly improved, especially in reducing the fraudulent user underreporting rate. Further, the behavioral associations that play a key role in fraud user identification are analyzed in conjunction with shape value to provide a reference for fraud pattern mining. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20798954
Volume :
11
Issue :
11
Database :
Complementary Index
Journal :
Systems
Publication Type :
Academic Journal
Accession number :
173861824
Full Text :
https://doi.org/10.3390/systems11110539