Back to Search Start Over

Evaluation of algal species distributions and prediction of cyanophyte cell counts using statistical techniques.

Authors :
Hwang, Seong-Yun
Choi, Byung-Woong
Park, Jong-Hwan
Shin, Dong-Seok
Lee, Won-Seok
Chung, Hyeon-Su
Son, Mi-Sun
Ha, Don-Woo
Lee, Kyung-Lak
Jung, Kang-Young
Source :
Environmental Science & Pollution Research; Nov2023, Vol. 30 Issue 55, p117143-117164, 22p
Publication Year :
2023

Abstract

Safe drinking water sources are crucial for human health. Consequently, water quality management, including continuous monitoring of water quality and algae at sources, is critical to ensure the availability of safe water for local residents. This study aimed to construct statistical prediction models considering probability distributions relevant to cyanophyte cell counts and compare their prediction performance. In this study, water quality parameters at Juam Lake and Tamjin Lake, representative water sources in the Yeongsan and Seomjin rivers, South Korea, were investigated. We used a water quality monitoring network, algae alert system, and hydraulic and hydrological data measured every 7 days from January 2017 to December 2022 from the Water Environment Information System of the National Institute of Environmental Research. Using data for 2017–2021 as a training set and data for 2022 as a test set, the performances of seven models were compared for predicting cyanophyte cell counts. Environmental factors associated with algae in water sources were observed based on the monitoring data, and a prediction model appropriate for the cyanophyte distribution was generated, which also included the risk of toxicity. The extreme gradient boosting with the random forest model had the best predictive performance for cyanophyte cell counts. The study results are expected to facilitate water quality management in various water systems, including water sources. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09441344
Volume :
30
Issue :
55
Database :
Complementary Index
Journal :
Environmental Science & Pollution Research
Publication Type :
Academic Journal
Accession number :
173851064
Full Text :
https://doi.org/10.1007/s11356-023-30077-8