Back to Search Start Over

GEE-Based monitoring method of key management nodes in cotton production.

Authors :
Yang, Weiguang
Xu, Weicheng
Yan, Kangtin
Cui, Zongyin
Chen, Pengchao
Zhang, Lei
Lan, Yubin
Source :
International Journal of Digital Earth; Jan2023, Vol. 16 Issue 1, p1907-1922, 16p
Publication Year :
2023

Abstract

The high-temporal-resolution monitoring of key management nodes in cotton management via agricultural remote sensing is vital for field cotton macro-statistics, particularly for predicting cotton production and obtaining comprehensive data. This study examines Shihezi, Xinjiang as a case study, utilizing Sentinel-1 and Sentinel-2 data from 2019 to 2021. Three machine learning models(RF, SVM, and CART) were employed to extract annual crop classification area rasters, monitor weekly cultivation progress, and monitor abandoned cropland during the cultivation period. The results demonstrate that the random forest model has produced satisfactory results in gridded extraction for cotton classification areas, achieving the producer's accuracy of the cotton category reached 98.5%, and the kappa coefficient is 0.947. Cotton cultivated in 2021 began is a week later than in 2020, yet exhibited a faster cultivate speed. The proportion of abandoned cotton fields in the study area rose in 2020 compared to 2019. The methodology presented in this study has a certain reference value for exploring the monitoring of continuous changes in crops over the years and macro-monitoring of important activities in the entire growth cycle. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
17538947
Volume :
16
Issue :
1
Database :
Complementary Index
Journal :
International Journal of Digital Earth
Publication Type :
Academic Journal
Accession number :
173778913
Full Text :
https://doi.org/10.1080/17538947.2023.2218119