Back to Search Start Over

Prediction algorithm for gastric cancer in a general population: A validation study.

Authors :
Wong, Martin C. S.
Leung, Eman Yee‐man
Yau, Sarah T. Y.
Chan, Sze Chai
Xie, Shaohua
Xu, Wanghong
Huang, Junjie
Source :
Cancer Medicine; Nov2023, Vol. 12 Issue 21, p20544-20553, 10p
Publication Year :
2023

Abstract

Background: Worldwide, gastric cancer is a leading cause of cancer incidence and mortality. This study aims to devise and validate a scoring system based on readily available clinical data to predict the risk of gastric cancer in a large Chinese population. Methods: We included a total of 6,209,697 subjects aged between 18 and 70 years who have received upper digestive endoscopy in Hong Kong from 1997 to 2018. A binary logistic regression model was constructed to examine the predictors of gastric cancer in a derivation cohort (n = 4,347,224), followed by model evaluation in a validation cohort (n = 1,862,473). The algorithm's discriminatory ability was evaluated as the area under the curve (AUC) of the mathematically constructed receiver operating characteristic (ROC) curve. Results: Age, male gender, history of Helicobacter pylori infection, use of proton pump inhibitors, non‐use of aspirin, non‐steroidal anti‐inflammatory drugs (NSAIDs), and statins were significantly associated with gastric cancer. A scoring of ≤8 was designated as "average risk (AR)". Scores at 9 or above were assigned as "high risk (HR)". The prevalence of gastric cancer was 1.81% and 0.096%, respectively, for the HR and LR groups. The AUC for the risk score in the validation cohort was 0.834, implying an excellent fit of the model. Conclusions: This study has validated a simple, accurate, and easy‐to‐use scoring algorithm which has a high discriminatory capability to predict gastric cancer. The score could be adopted to risk stratify subjects suspected as having gastric cancer, thus allowing prioritized upper digestive tract investigation. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20457634
Volume :
12
Issue :
21
Database :
Complementary Index
Journal :
Cancer Medicine
Publication Type :
Academic Journal
Accession number :
173778334
Full Text :
https://doi.org/10.1002/cam4.6629