Back to Search Start Over

Lyapunov Conditions for Differentiability of Markov Chain Expectations.

Authors :
Rhee, Chang-Han
Glynn, Peter W.
Source :
Mathematics of Operations Research; Nov2023, Vol. 48 Issue 4, p2019-2042, 24p
Publication Year :
2023

Abstract

We consider a family of Markov chains whose transition dynamics are affected by model parameters. Understanding the parametric dependence of (complex) performance measures of such Markov chains is often of significant interest. The derivatives and their continuity of the performance measures w.r.t. the parameters play important roles, for example, in numerical optimization of the performance measures, and quantification of the uncertainties in the performance measures when there are uncertainties in the parameters from the statistical estimation procedures. In this paper, we establish conditions that guarantee the smoothness of various types of intractable performance measures—such as the stationary and random horizon discounted performance measures—of general state space Markov chains and provide probabilistic representations for the derivatives. Funding: C.-H. Rhee is supported by the National Science Foundation [Grant CMMI-2146530]. [ABSTRACT FROM AUTHOR]

Subjects

Subjects :
MARKOV processes

Details

Language :
English
ISSN :
0364765X
Volume :
48
Issue :
4
Database :
Complementary Index
Journal :
Mathematics of Operations Research
Publication Type :
Academic Journal
Accession number :
173670238
Full Text :
https://doi.org/10.1287/moor.2022.1328