Back to Search Start Over

Bayesian neural networks with physics‐aware regularization for probabilistic travel time modeling.

Authors :
Olivier, Audrey
Mohammadi, Sevin
Smyth, Andrew W.
Adams, Matt
Source :
Computer-Aided Civil & Infrastructure Engineering; Dec2023, Vol. 38 Issue 18, p2614-2631, 18p
Publication Year :
2023

Abstract

The integration of data‐driven models such as neural networks for high‐consequence decision making has been largely hindered by their lack of predictive power away from training data and their inability to quantify uncertainties often prevalent in engineering applications. This article presents an ensembling method with function‐space regularization, which allows to integrate prior information about the function of interest, thus improving generalization performance, while enabling quantification of aleatory and epistemic uncertainties. This framework is applied to build a probabilistic ambulance travel time predictor, leveraging historical ambulance data provided by the Fire Department of New York City. Results show that the integration of a non‐Gaussian likelihood and prior information from a road network analysis yields appropriate probabilistic predictions of travel times, which could be further leveraged for emergency medical service (EMS) decision making. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10939687
Volume :
38
Issue :
18
Database :
Complementary Index
Journal :
Computer-Aided Civil & Infrastructure Engineering
Publication Type :
Academic Journal
Accession number :
173603982
Full Text :
https://doi.org/10.1111/mice.13047