Back to Search Start Over

Dynamical Response of the Arabian Sea Oxygen Minimum Zone to the Extreme Indian Ocean Dipole Events in 2016 and 2019.

Authors :
Zhang, Zhiwei
Ma, Wentao
Chai, Fei
Source :
Geophysical Research Letters; Nov2023, Vol. 50 Issue 21, p1-11, 11p
Publication Year :
2023

Abstract

The Indian Ocean Dipole (IOD) plays a crucial role in shaping local and global environments, yet its effects on interannual variability of the Arabian Sea oxygen minimum zone (ASOMZ) remains poorly understood. Here, we used a coupled physical‐biogeochemical model to investigate the dynamical response of the ASOMZ to extreme negative (2016) and positive (2019) IOD events. Our findings revealed that the suboxic area of the ASOMZ reduced (expanded) by ∼27% (∼28%) after the negative (positive) IOD event. Compared to the 2019 pIOD event, approximately 2.5 times more oxygen‐rich water was delivered into the Arabian Sea during the 2016 nIOD event, replenishing dissolved oxygen (DO) consumed by intensified upwelling‐induced enhanced remineralization of particulate organic matter (POM), thereby increasing the DO concentration in the Gulf of Aden. Conversely, more POM from the western Arabian Sea was transported to the central Arabian Sea, leading to a subsequent decrease in DO concentration there. Plain Language Summary: The Indian Ocean Dipole (IOD) is a climate phenomenon that sea surface temperature in the western Indian Ocean becomes alternately warmer (positive phase) and then colder (negative phase) than the eastern Indian Ocean south of Indonesia. This variability significantly impacts global atmospheric circulation and environments. The Arabian Sea oxygen minimum zone (ASOMZ) is an area in the Arabian Sea characterized by low dissolved oxygen (DO) levels, which can have adverse effects on marine life. We used a model to examine how extreme IOD events influence the ASOMZ. The results suggested that during the negative IOD event in 2016, the suboxic area of the ASOMZ decreased by approximately 27%, while it expanded by approximately 28% during the positive IOD event in 2019. The response of the ASOMZ to IOD events in the Gulf of Aden was primarily modulated by physical factors, such as the Somali Coastal Current and local upwelling. On the other hand, the ASOMZ in the central Arabian Sea was regulated by a combination of biological and physical processes. These findings contributed to our understanding of the ASOMZ's response to IOD events, which is essential for studying the Arabian Sea's marine ecosystem. Key Points: The response of the Arabian Sea oxygen minimum zone to the Indian Ocean Dipole events in the Gulf of Aden was modulated by physical factorsThe Arabian Sea oxygen minimum zone in the central Arabian Sea was regulated by both biological and physical processesThe upper edge of the Arabian Sea oxygen minimum zone invaded the lower euphotic zone (100–200 m) under the impact of Indian Ocean Dipole events [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00948276
Volume :
50
Issue :
21
Database :
Complementary Index
Journal :
Geophysical Research Letters
Publication Type :
Academic Journal
Accession number :
173585870
Full Text :
https://doi.org/10.1029/2023GL104226