Back to Search Start Over

Enhancing Ecological Efficiency in Biological Wastewater Treatment: A Case Study on Quality Control Information System.

Authors :
Alekseevsky, Dmitriy
Chernysh, Yelizaveta
Shtepa, Vladimir
Chubur, Viktoriia
Stejskalová, Lada
Balintova, Magdalena
Fukui, Manabu
Roubík, Hynek
Source :
Water (20734441); Nov2023, Vol. 15 Issue 21, p3744, 23p
Publication Year :
2023

Abstract

This study aimed to improve the control system of the biological stage of wastewater treatment using the quality control information system to support the concept of environmental efficiency management. In this case, the object of the study was the treatment facilities of Sumy city (Ukraine). For automatic control of wastewater quality, pH, oxidation reduction potential (ORP), electrical conductivity, and temperature indicators were taken, as well as hydrobiological analysis of activated sludge and mathematical modelling. The pH of wastewater at the input system has systematically unacceptable values (above 8.5 were recorded). Unacceptable concentrations of sulphur-containing toxicants arrive at the entrance of treatment facilities (0.22–1.3 mg/L). The response of activated sludge biocenosis to increasing concentrations of hydrogen sulphide in wastewater was analysed. Furthermore, a mathematical model of monoculture population growth, with two factors that affect population growth (nutrient concentration and monoculture production concentration), was implemented for the initial assessment of possible negative effects on wastewater treatment. The differential equation of the population dynamics of the i-th species of microorganisms in activated sludge was described. The applied system of automated monitoring of wastewater parameters with expert assessment of activated sludge and a unified mathematical model of approaches allows for a complex system of decision-making support to be realised. However, this requires the construction of mathematical models that would take into account the cause–effect relations that operate under conditions of incomplete technological information and the potential presence of emergencies due to natural disasters and military activities. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20734441
Volume :
15
Issue :
21
Database :
Complementary Index
Journal :
Water (20734441)
Publication Type :
Academic Journal
Accession number :
173565178
Full Text :
https://doi.org/10.3390/w15213744