Back to Search Start Over

Analysis of Narrow Bipolar Events Using Mode Decomposition Methods.

Authors :
Senay, Seda
Krehbiel, Paul R.
da Silva, Caitano L.
Edens, Harald E.
Bennecke, David
Stanley, Mark A.
Source :
Journal of Geophysical Research. Atmospheres; 11/16/2023, Vol. 128 Issue 21, p1-14, 14p
Publication Year :
2023

Abstract

Multi‐resolution analysis methods can reveal the underlying physical dynamics of nonstationary signals, such as those from lightning. In this paper we demonstrate the application of two multi‐resolution analysis methods: Ensemble Empirical Mode Decomposition (EEMD) and Variational Mode Decomposition (VMD) in a comparative way in the analysis of electric field change waveforms from lightning. EEMD and VMD decompose signals into a set of Intrinsic Mode Functions (IMFs). The IMFs can be combined using distance and divergence metrics to obtain noise reduction or to obtain new waveforms that isolate the physical processes of interest while removing irrelevant components of the original signal. We apply the EEMD and VMD methods to the observations of three close Narrow Bipolar Events (NBEs) that were reported by Rison et al. (2016, https://doi.org/10.1038/ncomms10721). The ΔE observations reveal the occurrence of complex oscillatory processes after the main NBE sferic. We show that both EEMD and VMD are able to isolate the oscillations from the main NBE, with VMD being more effective of the two methods since it requires the least user supervision. The oscillations are found to begin at the end of the NBEs' downward fast positive breakdown, and appear to be produced by a half‐wavelength standing wave within a weakly‐conducting resonant ionization cavity left behind in the wake of the streamer‐based NBE event. Additional analysis shows that one of the NBEs was likely initiated by an energetic cosmic ray shower, and also corrects a misinterpretation in the literature that fast breakdown is an artifact of NBE‐like events in interferometer observations. Plain Language Summary: This paper investigates the application of mode decomposition techniques to the analysis of Narrow Bipolar Events (NBEs). NBEs are high‐power discharges that often occur as the initiating event of lightning flashes, and are produced by streamer‐based activity called fast positive breakdown. We apply Ensemble Empirical Mode Decomposition (EEMD) and Variational Mode Decomposition (VMD) methods to three NBEs that were observed at Langmuir Laboratory in New Mexico to extract and interpret oscillatory behavior that occurred following the NBEs. We show that both EEMD and VMD separate the oscillations from the strong electric field change of the parent NBE, with VMD being the preferred choice. The resulting waveforms are indicative of a shock‐excited residual process that lasts for tens of microseconds, beginning at the end of the downward fast breakdown activity. Although questions remain about the physical mechanism of the oscillations, they appear to be caused by the NBE's streamers creating a weakly‐conducting resonant cavity in its wake that supports half‐wavelength standing wave oscillations, analogous to the vibrations of a plucked guitar string. Key Points: Ensemble Empirical Mode Decomposition and Variational Mode Decomposition separate out Narrow Bipolar Event (NBE) oscillations for further studies of physical mechanisms responsible for oscillationsThe results show the oscillations initiate not during the NBE but at the end of the fast positive breakdown processThe oscillatory behavior indicates that residual ionic conductivity creates a resonant cavity which emits half‐wavelength radiation [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
2169897X
Volume :
128
Issue :
21
Database :
Complementary Index
Journal :
Journal of Geophysical Research. Atmospheres
Publication Type :
Academic Journal
Accession number :
173516269
Full Text :
https://doi.org/10.1029/2022JD038444