Back to Search
Start Over
Dyadic Maximal Operators on Martingale Musielak–Orlicz Hardy Type Spaces and Applications.
- Source :
- Integral Equations & Operator Theory; Dec2023, Vol. 95 Issue 4, p1-32, 32p
- Publication Year :
- 2023
-
Abstract
- Let φ : [ 0 , 1) × [ 0 , ∞) → [ 0 , ∞) be a Musielak–Orlicz function and q ∈ (0 , ∞ ] . In this article, the authors characterize the martingale Musielak–Orlicz Hardy space H φ [ 0 , 1) and the martingale Musielak–Orlicz–Lorentz Hardy space H φ , q [ 0 , 1) via dyadic maximal operators. As applications, the authors prove that the maximal Fejér operator is bounded from the space H φ [ 0 , 1) to the Musielak–Orlicz space L φ [ 0 , 1) and from H φ , q [ 0 , 1) to the Musielak–Orlicz–Lorentz space L φ , q [ 0 , 1) , which further implies some convergence results of the Fejér means. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 0378620X
- Volume :
- 95
- Issue :
- 4
- Database :
- Complementary Index
- Journal :
- Integral Equations & Operator Theory
- Publication Type :
- Academic Journal
- Accession number :
- 173482389
- Full Text :
- https://doi.org/10.1007/s00020-023-02747-2