Back to Search Start Over

Intrinsic room-temperature ferromagnetism in a two-dimensional semiconducting metal-organic framework.

Authors :
Feng, Sihua
Duan, Hengli
Tan, Hao
Hu, Fengchun
Liu, Chaocheng
Wang, Yao
Li, Zhi
Cai, Liang
Cao, Yuyang
Wang, Chao
Qi, Zeming
Song, Li
Liu, Xuguang
Sun, Zhihu
Yan, Wensheng
Source :
Nature Communications; 11/3/2023, Vol. 14 Issue 1, p1-9, 9p
Publication Year :
2023

Abstract

The development of two-dimensional (2D) magnetic semiconductors with room-temperature ferromagnetism is a significant challenge in materials science and is important for the development of next-generation spintronic devices. Herein, we demonstrate that a 2D semiconducting antiferromagnetic Cu-MOF can be endowed with intrinsic room-temperature ferromagnetic coupling using a ligand cleavage strategy to regulate the inner magnetic interaction within the Cu dimers. Using the element-selective X-ray magnetic circular dichroism (XMCD) technique, we provide unambiguous evidence for intrinsic ferromagnetism. Exhaustive structural characterizations confirm that the change of magnetic coupling is caused by the increased distance between Cu atoms within a Cu dimer. Theoretical calculations reveal that the ferromagnetic coupling is enhanced with the increased Cu-Cu distance, which depresses the hybridization between 3d orbitals of nearest Cu atoms. Our work provides an effective avenue to design and fabricate MOF-based semiconducting room-temperature ferromagnetic materials and promotes their practical applications in next-generation spintronic devices. Two-dimensional magnetic materials present a promising platform for spintronic devices; however, these are predominantly either insulting, or metallic. Here, Feng et al demonstrate a semiconducting two-dimensional metal-organic framework with intrinsic ferromagnetism. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20411723
Volume :
14
Issue :
1
Database :
Complementary Index
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
173430315
Full Text :
https://doi.org/10.1038/s41467-023-42844-9