Back to Search Start Over

Image Quality and Radiation Dose of Conventional and Wide-Field High-Resolution Cone-Beam Computed Tomography for Cerebral Angiography: A Phantom Study.

Authors :
Kawauchi, Satoru
Chida, Koichi
Hamada, Yusuke
Tsuruta, Wataro
Source :
Tomography: A Journal for Imaging Research; Oct2023, Vol. 9 Issue 5, p1683-1693, 11p
Publication Year :
2023

Abstract

There has been an increase in the use of interventional neuroradiology procedures because of their non-invasiveness compared to surgeries and the improved image quality of fluoroscopy, digital subtraction angiography, and rotational angiography. Although cone-beam computed tomography (CBCT) images are inferior to multi-detector CT images in terms of low-contrast detectability and lower radiation doses, CBCT scans are frequently performed because of their accessibility. This study aimed to evaluate the image quality and radiation dose of two different high-resolution CBCTs (HR CBCT): conventional (C-HR CBCT) and wide-field HR CBCT (W-HR CBCT). The modulation transfer function (MTF), noise power spectrum (NPS), and contrast-to-noise ratio (CNR) were used to evaluate the image quality. On comparing the MTF of C-HR CBCT with a 256 × 256 matrix and that of W-HR CBCT with a 384 × 384 matrix, the MTF of W-HR CBCT with the 384 × 384 matrix was larger. A comparison of the NPS and CNR of C-HR CBCT with a 256 × 256 matrix and W-HR CBCT with a 384 × 384 matrix showed that both values were comparable. The reference air kerma values were equal for C-HR CBCT and W-HR CBCT; however, the value of the kerma area product was 1.44 times higher for W-HR CBCT compared to C-HR CBCT. The W-HR CBCT allowed for improved spatial resolution while maintaining the image noise and low-contrast detectability by changing the number of image matrices from 256 × 256 to 384 × 384. Our study revealed the image characteristics and radiation dose of W-HR CBCT. Given its advantages of low-contrast detectability and wide-area imaging with high spatial resolution, W-HR CBCT may be useful in interventional neuroradiology for acute ischemic stroke. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
23791381
Volume :
9
Issue :
5
Database :
Complementary Index
Journal :
Tomography: A Journal for Imaging Research
Publication Type :
Academic Journal
Accession number :
173336323
Full Text :
https://doi.org/10.3390/tomography9050134