Back to Search Start Over

Investigation of mechanical, physical and thermoacoustic properties of a novel light-weight dense wall panels made of bamboo Phyllostachys Bambusides.

Authors :
Gholizadeh, Parham
Hosseinabadi, Hamid Zarea
Hebel, Dirk E.
Javadian, Alireza
Source :
Scientific Reports; 10/26/2023, Vol. 13 Issue 1, p1-15, 15p
Publication Year :
2023

Abstract

This study was conducted to evaluate the properties of lightweight sandwich panels made from low diameter bamboo particles, Phyllostachys Bambusides collected from Gilan province, Iran, as core layer, combined with thin wall bamboo strips as faces. The effects of three individual variables such as density of core layer (350–550 kg/m<superscript>3</superscript>), resin consumption in core layer (7.5–9.5%) and resin consumption in faces (175–275 g/m<superscript>2</superscript>) on some important physical, mechanical and thermos-acoustic properties of the panels were investigated. Response surface methodology was used to statistically analyse the results and optimization process. The average values for the mechanical properties of the sandwich panels were obtained as 17.16 MPa, 5669 MPa, 0.02 MPa, 17.60 MPa, 1.83 MPa, 0.03 MPa, and 913.3 MPA for modulus of rupture, modulus of elasticity, internal bonding, compression strength parallel to face grain, compression strength perpendicular to face grain, shear strength, and screw holding, respectively. Finally, thermal conductivity and noise reduction coefficient of the panels were respectively gained as 0.01 W/mk and 0.31. The results of technical and thermo- acoustic properties of the panels showed that the light weight sandwich panels from bamboo residues would be a suitable and sustainable alternative as an insulation material for sustainable and green construction. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20452322
Volume :
13
Issue :
1
Database :
Complementary Index
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
173237041
Full Text :
https://doi.org/10.1038/s41598-023-45515-3