Back to Search Start Over

Variational inference of ice shelf rheology with physics-informed machine learning.

Authors :
Riel, Bryan
Minchew, Brent
Source :
Journal of Glaciology; Oct2023, Vol. 69 Issue 277, p1167-1186, 20p
Publication Year :
2023

Abstract

Floating ice shelves that fringe the coast of Antarctica resist the flow of grounded ice into the ocean. One of the key factors governing the amount of flow resistance an ice shelf provides is the rigidity (related to viscosity) of the ice that constitutes it. Ice rigidity is highly heterogeneous and must be calibrated from spatially continuous surface observations assimilated into an ice-flow model. Realistic uncertainties in calibrated rigidity values are needed to quantify uncertainties in ice sheet and sea-level forecasts. Here, we present a physics-informed machine learning framework for inferring the full probability distribution of rigidity values for a given ice shelf, conditioned on ice surface velocity and thickness fields derived from remote-sensing data. We employ variational inference to jointly train neural networks and a variational Gaussian Process to reconstruct surface observations, rigidity values and uncertainties. Applying the framework to synthetic and large ice shelves in Antarctica demonstrates that rigidity is well-constrained where ice deformation is measurable within the noise level of the observations. Further reduction in uncertainties can be achieved by complementing variational inference with conventional inversion methods. Our results demonstrate a path forward for continuously updated calibrations of ice flow parameters from remote-sensing observations. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00221430
Volume :
69
Issue :
277
Database :
Complementary Index
Journal :
Journal of Glaciology
Publication Type :
Academic Journal
Accession number :
173178382
Full Text :
https://doi.org/10.1017/jog.2023.8