Back to Search Start Over

Linear programming-based solution methods for constrained partially observable Markov decision processes.

Authors :
Helmeczi, Robert K.
Kavaklioglu, Can
Cevik, Mucahit
Source :
Applied Intelligence; Oct2023, Vol. 53 Issue 19, p21743-21769, 27p
Publication Year :
2023

Abstract

Constrained partially observable Markov decision processes (CPOMDPs) have been used to model various real-world phenomena. However, they are notoriously difficult to solve to optimality, and there exist only a few approximation methods for obtaining high-quality solutions. In this study, grid-based approximations are used in combination with linear programming (LP) models to generate approximate policies for CPOMDPs. A detailed numerical study is conducted with six CPOMDP problem instances considering both their finite and infinite horizon formulations. The quality of approximation algorithms for solving unconstrained POMDP problems is established through a comparative analysis with exact solution methods. Then, the performance of the LP-based CPOMDP solution approaches for varying budget levels is evaluated. Finally, the flexibility of LP-based approaches is demonstrated by applying deterministic policy constraints, and a detailed investigation into their impact on rewards and CPU run time is provided. For most of the finite horizon problems, deterministic policy constraints are found to have little impact on expected reward, but they introduce a significant increase to CPU run time. For infinite horizon problems, the reverse is observed: deterministic policies tend to yield lower expected total rewards than their stochastic counterparts, but the impact of deterministic constraints on CPU run time is negligible in this case. Overall, these results demonstrate that LP models can effectively generate approximate policies for both finite and infinite horizon problems while providing the flexibility to incorporate various additional constraints into the underlying model. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0924669X
Volume :
53
Issue :
19
Database :
Complementary Index
Journal :
Applied Intelligence
Publication Type :
Academic Journal
Accession number :
173052772
Full Text :
https://doi.org/10.1007/s10489-023-04603-7