Back to Search Start Over

A SEEPAGE MODEL FOR SOLID-PHASE PARTICLE INSTABILITY IN POROUS MEDIA-BASED FRACTAL THEORY.

Authors :
TAN, XIAO-HUA
ZHOU, XIAO-JUN
LI, HAI
PENG, XIAN
LI, LONG-XIN
LI, QIAN
LI, QIU
WU, TING-TING
Source :
Future Oncology; Sep2023, Vol. 19 Issue 30, p1-12, 12p
Publication Year :
2023

Abstract

This paper presents a new fractal seepage model to study the decrease in seepage capacity caused by fluid erosion and pressure changes in porous media. The normalized permeability obtained by our model is in good agreement with the experiments and models in literature and has high accuracy and usability. The results demonstrate that: (1) the larger the instability coefficient, the higher the particle stability, the better the permeability of the porous medium, the later the normalized permeability decreases, and the slower it goes down, and (2) the fractal dimension of the solid skeleton set mainly affects the porosity and permeability of porous media, independent of the stability of solid particles. (3) The fractal dimension of movable particles is one of the main factors affecting the normalized permeability, it does not affect the instability conditions solid-phase particles in the porous media. The proposed model makes full use of the microstructure parameters of porous media, further reveals the mechanism of fluid flow in porous media with particle shedding, and provides a sound theoretical basis for various practical applications in petroleum engineering and other industries. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14796694
Volume :
19
Issue :
30
Database :
Complementary Index
Journal :
Future Oncology
Publication Type :
Academic Journal
Accession number :
173050008
Full Text :
https://doi.org/10.1142/S0218348X23401825