Back to Search Start Over

Different Responses of Soil Moisture to Different Artificial Forest Species on the Loess Plateau.

Authors :
Cao, Jing
Chen, Yiping
Jiang, Yao
Chen, Jingshu
Zhang, Yuanyuan
Wu, Junhua
Source :
Sustainability (2071-1050); Oct2023, Vol. 15 Issue 19, p14275, 17p
Publication Year :
2023

Abstract

The Chinese Loess Plateau has undertaken a large-scale "Grain for Green" project since 1999. Understanding how reforestation affects soil moisture is crucial for ecological construction and the region's revegetation. In this study, soil sensors were installed to monitor the soil moisture content (SMC) and soil desiccation intensity in a 0–200 cm soil profile online during the growing season, with farmland as a control and Robinia (R.) pseudoacacia L., Pinus (P.) tabulaeformis Carr., Populus (P.) alba L., and Ulmus (U.) pumila L. were selected. The results showed that the SMC increased with soil depth, and the soil moisture storage (SMS) in the 0–200 cm soil profile was ranked as R. pseudoacacia L. (424.3 mm) < farmland (479.8 mm) < U. pumila L. (569.8 mm) < P. alba L. (583.9 mm) < P. tabulaeformis Carr. (589.8 mm). Secondly, the percentages of inefficient water and gravimetric water in soil moisture were ranked as R. pseudoacacia L. (63%) > farmland (49%) > U. pumila L. (43%) > P. alba L. (17%) > P. tabulaeformis Carr. (11%). The soil desiccation intensity of artificial forests was heavy in June, light in April and July, and no desiccation in the other months. Moderate desiccation was discovered in the 0–40 cm soil layer and mild desiccation occurred in the 40–60 cm soil layer. Additionally, the representative soil layer for SMS in farmland for P. tabulaeformis Carr., U. pumila L., and R. pseudoacacia L. was the 90 cm soil layer, and the SMS representative soil layer for P. alba L. was the 70 cm soil layer. In brief, an SMS deficit occurred after the conversion of the farmland to R. pseudoacacia L., but there was an SMS surplus after the conversion of the farmland to P. alba L., U. pumila L., and P. tabulaeformis Carr. This suggests that the artificial forest species could be optimized by introducing P. tabulaeformis Carr. instead of R. pseudoacacia L., and the degradation of R. pseudoacacia L. could be suppressed by the application of a nitrogen fertilizer. Our research demonstrated that soil moisture depletion patterns were closely related to artificial forest species, and attention should be paid to the vegetation restoration and maintenance of afforestation achievements in water-constrained arid regions in the future. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20711050
Volume :
15
Issue :
19
Database :
Complementary Index
Journal :
Sustainability (2071-1050)
Publication Type :
Academic Journal
Accession number :
172987783
Full Text :
https://doi.org/10.3390/su151914275