Back to Search Start Over

Complete patient exposure during paediatric brain cancer treatment for photon and proton therapy techniques including imaging procedures.

Authors :
De Saint-Hubert, Marijke
Boissonnat, Guillaume
Schneider, Uwe
Bäumer, Christian
Verbeek, Nico
Esser, Johannes
Wulff, Jörg
Stuckmann, Florian
Suesselbeck, Finja
Nabha, Racell
Dabin, Jéré mie
Vasi, Fabiano
Radonic, Stephan
Rodriguez, Miguel
Simon, Anne Catherine
Journy, Neige
Timmermann, Beate
Thierry-Chef, Isabelle
Brualla, Lorenzo
Source :
Frontiers in Oncology; 2023, p01-14, 14p
Publication Year :
2023

Abstract

Background: In radiotherapy, especially when treating children, minimising exposure of healthy tissue can prevent the development of adverse outcomes, including second cancers. In this study we propose a validated Monte Carlo framework to evaluate the complete patient exposure during paediatric brain cancer treatment. Materials and methods: Organ doses were calculated for treatment of a diffuse midline glioma (50.4 Gy with 1.8 Gy per fraction) on a 5-year-old anthropomorphic phantom with 3D-conformal radiotherapy, intensity modulated radiotherapy (IMRT), volumetric modulated arc therapy (VMAT) and intensity modulated pencil beam scanning (PBS) proton therapy. Doses from computed tomography (CT) for planning and on-board imaging for positioning (kV-cone beam CT and X-ray imaging) accounted for the estimate of the exposure of the patient including imaging therapeutic dose. For dose calculations we used validated Monte Carlo-based tools (PRIMO, TOPAS, PENELOPE), while lifetime attributable risk (LAR) was estimated from doseresponse relationships for cancer induction, proposed by Schneider et al. Results: Out-of-field organ dose equivalent data of proton therapy are lower, with doses between 0.6 mSv (testes) and 120 mSv (thyroid), when compared to photon therapy revealing the highest out-of-field doses for IMRT ranging between 43 mSv (testes) and 575 mSv (thyroid). Dose delivered by CT ranged between 0.01 mSv (testes) and 72 mSv (scapula) while a single imaging positioning ranged between 2 <subscript>μ</subscript>Sv (testes) and 1.3 mSv (thyroid) for CBCT and 0.03 <subscript>μ</subscript>Sv (testes) and 48 <subscript>μ</subscript>Sv (scapula) for X-ray. Adding imaging dose from CT and daily CBCT to the therapeutic demonstrated an important contribution of imaging to the overall radiation burden in the course of treatment, which is subsequently used to predict the LAR, for selected organs. Conclusion: The complete patient exposure during paediatric brain cancer treatment was estimated by combining the results from different Monte Carlobased dosimetry tools, showing that proton therapy allows significant reduction of the out-of-field doses and secondary cancer risk in selected organs. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
2234943X
Database :
Complementary Index
Journal :
Frontiers in Oncology
Publication Type :
Academic Journal
Accession number :
172759872
Full Text :
https://doi.org/10.3389/fonc.2023.1222800