Back to Search Start Over

Promoting CO2 Electroreduction to Multi‐Carbon Products by Hydrophobicity‐Induced Electro‐Kinetic Retardation.

Authors :
Zhuansun, Mengjiao
Liu, Yue
Lu, Ruihu
Zeng, Fan
Xu, Zhanyou
Wang, Ying
Yang, Yaoyue
Wang, Ziyun
Zheng, Gengfeng
Wang, Yuhang
Source :
Angewandte Chemie International Edition; 10/9/2023, Vol. 62 Issue 41, p1-6, 6p
Publication Year :
2023

Abstract

Advancing the performance of the Cu‐catalyzed electrochemical CO2 reduction reaction (CO2RR) is crucial for its practical applications. Still, the wettable pristine Cu surface often suffers from low exposure to CO2, reducing the Faradaic efficiencies (FEs) and current densities for multi‐carbon (C2+) products. Recent studies have proposed that increasing surface availability for CO2 by cation‐exchange ionomers can enhance the C2+ product formation rates. However, due to the rapid formation and consumption of *CO, such promotion in reaction kinetics can shorten the residence of *CO whose adsorption determines C2+ selectivity, and thus the resulting C2+ FEs remain low. Herein, we discover that the electro‐kinetic retardation caused by the strong hydrophobicity of quaternary ammonium group‐functionalized polynorbornene ionomers can greatly prolong the *CO residence on Cu. This unconventional electro‐kinetic effect is demonstrated by the increased Tafel slopes and the decreased sensitivity of *CO coverage change to potentials. As a result, the strongly hydrophobic Cu electrodes exhibit C2+ Faradaic efficiencies of ≈90 % at a partial current density of 223 mA cm−2, more than twice of bare or hydrophilic Cu surfaces. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14337851
Volume :
62
Issue :
41
Database :
Complementary Index
Journal :
Angewandte Chemie International Edition
Publication Type :
Academic Journal
Accession number :
172755728
Full Text :
https://doi.org/10.1002/anie.202309875