Back to Search Start Over

SCA-Net: Multiscale Contextual Information Network for Building Extraction Based on High-Resolution Remote Sensing Images.

Authors :
Wang, Yuanzhi
Zhao, Qingzhan
Wu, Yuzhen
Tian, Wenzhong
Zhang, Guoshun
Source :
Remote Sensing; Sep2023, Vol. 15 Issue 18, p4466, 19p
Publication Year :
2023

Abstract

Accurately extracting buildings is essential for urbanization rate statistics, urban planning, resource allocation, etc. The high-resolution remote sensing images contain rich building information, which provides an important data source for building extraction. However, the extreme abundance of building types with large differences in size, as well as the extreme complexity of the background environment, result in the accurate extraction of spatial details of multi-scale buildings, which remains a difficult problem worth studying. To this end, this study selects the representative Xinjiang Tumxuk urban area as the study area. A building extraction network (SCA-Net) with feature highlighting, multi-scale sensing, and multi-level feature fusion is proposed, which includes Selective kernel spatial Feature Extraction (SFE), Contextual Information Aggregation (CIA), and Attentional Feature Fusion (AFF) modules. First, Selective kernel spatial Feature Extraction modules are used for cascading composition, highlighting information representation of features, and improving the feature extraction capability. Adding a Contextual Information Aggregation module enables the acquisition of multi-scale contextual information. The Attentional Feature Fusion module bridges the semantic gap between high-level and low-level features to achieve effective fusion between cross-level features. The classical U-Net, Segnet, Deeplab v3+, and HRNet v2 semantic segmentation models are compared on the self-built Tmsk and WHU building datasets. The experimental results show that the algorithm proposed in this paper can effectively extract multi-scale buildings in complex backgrounds with IoUs of 85.98% and 89.90% on the two datasets, respectively. SCA-Net is a suitable method for building extraction from high-resolution remote sensing images with good usability and generalization. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20724292
Volume :
15
Issue :
18
Database :
Complementary Index
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
172418801
Full Text :
https://doi.org/10.3390/rs15184466