Back to Search Start Over

SGAN-IDS: Self-Attention-Based Generative Adversarial Network against Intrusion Detection Systems.

Authors :
Aldhaheri, Sahar
Alhuzali, Abeer
Source :
Sensors (14248220); Sep2023, Vol. 23 Issue 18, p7796, 18p
Publication Year :
2023

Abstract

In cybersecurity, a network intrusion detection system (NIDS) is a critical component in networks. It monitors network traffic and flags suspicious activities. To effectively detect malicious traffic, several detection techniques, including machine learning-based NIDSs (ML-NIDSs), have been proposed and implemented. However, in much of the existing ML-NIDS research, the experimental settings do not accurately reflect real-world scenarios where new attacks are constantly emerging. Thus, the robustness of intrusion detection systems against zero-day and adversarial attacks is a crucial area that requires further investigation. In this paper, we introduce and develop a framework named SGAN-IDS. This framework constructs adversarial attack flows designed to evade detection by five BlackBox ML-based IDSs. SGAN-IDS employs generative adversarial networks and self-attention mechanisms to generate synthetic adversarial attack flows that are resilient to detection. Our evaluation results demonstrate that SGAN-IDS has successfully constructed adversarial flows for various attack types, reducing the detection rate of all five IDSs by an average of 15.93%. These findings underscore the robustness and broad applicability of the proposed model. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14248220
Volume :
23
Issue :
18
Database :
Complementary Index
Journal :
Sensors (14248220)
Publication Type :
Academic Journal
Accession number :
172417660
Full Text :
https://doi.org/10.3390/s23187796