Back to Search
Start Over
SGAN-IDS: Self-Attention-Based Generative Adversarial Network against Intrusion Detection Systems.
- Source :
- Sensors (14248220); Sep2023, Vol. 23 Issue 18, p7796, 18p
- Publication Year :
- 2023
-
Abstract
- In cybersecurity, a network intrusion detection system (NIDS) is a critical component in networks. It monitors network traffic and flags suspicious activities. To effectively detect malicious traffic, several detection techniques, including machine learning-based NIDSs (ML-NIDSs), have been proposed and implemented. However, in much of the existing ML-NIDS research, the experimental settings do not accurately reflect real-world scenarios where new attacks are constantly emerging. Thus, the robustness of intrusion detection systems against zero-day and adversarial attacks is a crucial area that requires further investigation. In this paper, we introduce and develop a framework named SGAN-IDS. This framework constructs adversarial attack flows designed to evade detection by five BlackBox ML-based IDSs. SGAN-IDS employs generative adversarial networks and self-attention mechanisms to generate synthetic adversarial attack flows that are resilient to detection. Our evaluation results demonstrate that SGAN-IDS has successfully constructed adversarial flows for various attack types, reducing the detection rate of all five IDSs by an average of 15.93%. These findings underscore the robustness and broad applicability of the proposed model. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 14248220
- Volume :
- 23
- Issue :
- 18
- Database :
- Complementary Index
- Journal :
- Sensors (14248220)
- Publication Type :
- Academic Journal
- Accession number :
- 172417660
- Full Text :
- https://doi.org/10.3390/s23187796