Back to Search Start Over

A Carboxyethylchitosan Gel Cross-Linked with Glutaraldehyde as a Candidate Carrier for Biomedical Applications.

Authors :
Korel, Anastasia
Samokhin, Alexander
Zemlyakova, Ekaterina
Pestov, Alexander
Blinova, Elena
Zelikman, Maxim
Tkachenko, Vadim
Bets, Viktoria
Kretien, Svetlana
Arzhanova, Elena
Litvinova, Ekaterina
Source :
Gels (2310-2861); Sep2023, Vol. 9 Issue 9, p756, 16p
Publication Year :
2023

Abstract

To date, few publications describe CEC's properties and possible applications—thus, further evaluation of these properties is a point of interest. The present in vitro model study aimed to evaluate a carboxyethylchitosan (CEC) gel with a degree of substitution of 1, cross-linked with glutaraldehyde at a polymer:aldehyde molar ratio of 10:1, as a potential carrier for delivering bacteriophages to various pH-fixed media (acidic, alkaline), and including gastrointestinal tract (GIT) variable medium. A quantitative analysis of bacteriophages released from the gel was performed using photon correlation spectrophotometry, and phage activity after emission into medium was evaluated using the spot test. The results showed that the CEC gel's maximum swelling ratios were at a nearly neutral alkaline pH. Increasing temperature enhances the swelling ratio of the gel independent from pH, up to 1127% at 37 °C and alkaline pH. The UV and photon correlation spectrophotometry showed equal gel release kinetics in both fixed media with acidic (pH = 2.2) and alkaline (pH = 7.4) pH environments at 37 °C, with the maximum release within two hours. However, phage lytic activity in the spot test during this simulation was absent. At the same time, we obtained an opaque phage lytic activity in the alkaline pH-fixed medium for at least three hours. Phages released from the tested CEC gel in different pHs suggest that this gel could be used for applications that require fast release at the treatment site both in acidic and alkaline pH. Such treatment sites could be a wound or even soil with mild acidic or alkaline pH. However, such CEC gel is not suitable as a delivery system to the GIT because of possible transported acid-sensitive agent (such as phages) release and destruction already in the stomach. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
23102861
Volume :
9
Issue :
9
Database :
Complementary Index
Journal :
Gels (2310-2861)
Publication Type :
Academic Journal
Accession number :
172395334
Full Text :
https://doi.org/10.3390/gels9090756