Back to Search Start Over

Superferromagnetic Sensors.

Authors :
Kondratyev, Vladimir N.
Osipov, Vladimir A.
Source :
Nanomanufacturing; Sep2023, Vol. 3 Issue 3, p263-280, 18p
Publication Year :
2023

Abstract

The strong ferromagnetic nanoparticles are analyzed within the band structure-based shell model, accounting for discrete quantum levels of conducting electrons. As is demonstrated, such an approach allows for the description of the observed superparamagnetic features of these nanocrystals. Assemblies of such superparamagnets incorporated into nonmagnetic insulators, semiconductors, or metallic substrates are shown to display ferromagnetic coupling, resulting in a superferromagnetic ordering at sufficiently dense packing. Properties of such metamaterials are investigated by making use of the randomly jumping interacting moments model, accounting for quantum fluctuations induced by the discrete electronic levels and disorder. Employing the mean-field treatment for such superparamagnetic assemblies, we obtain the magnetic state equation, indicating conditions for an unstable behavior. Respectively, magnetic spinodal regions and critical points occur on the magnetic phase diagram of such ensembles. The respective magnetodynamics exhibit jerky behavior expressed as erratic stochastic jumps in magnetic induction curves. At critical points, magnetodynamics displays the features of self-organized criticality. Analyses of magnetic noise correlations are proposed as model-independent analytical tools employed in order to specify, quantify, and analyze the magnetic structure and origin of superferromagnetism. We discuss some results for a sensor-mode application of superferromagnetic reactivity associated with spatially local external fields, e.g., the detection of magnetic particles. The transport of electric charge carriers between superparamagnetic particles is considered tunneling and Landau-level state dynamics. The tunneling magnetoresistance is predicted to grow noticeably with decreasing nanomagnet size. The giant magnetoresistance is determined by the ratio of the respective times of flight and relaxation and can be significant at room temperature. Favorable designs for superferromagnetic systems with sensor implications are revealed. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
2673687X
Volume :
3
Issue :
3
Database :
Complementary Index
Journal :
Nanomanufacturing
Publication Type :
Academic Journal
Accession number :
172394481
Full Text :
https://doi.org/10.3390/nanomanufacturing3030017