Back to Search
Start Over
Optimisation of Cantilever Based Energy Harvester Design for Railway Bridges.
- Source :
- CE/Papers; Sep2023, Vol. 6 Issue 5, p399-406, 8p
- Publication Year :
- 2023
-
Abstract
- In this paper, the authors investigate energy harvesting on railway bridges. A tuning process based on a statistical analysis of the mechanical energy generated by a lumped‐mass model is presented and validated. A cantilever‐based energy harvester configuration is applied, and the optimal design of 3D printed energy harvesters is studied. The electromechanical behaviour of the device is represented by an analytical model for the estimation of the energy harvested from train‐induced bridge vibrations. A genetic algorithm constrained to geometry and structural integrity is used to solve the optimisation problem. The design flexibility and energy performance are maximised by 3D printing of the substructure of the harvester. An optimal device prototype with PAHT CF15 substructure is designed and manufactured for a real bridge in the Madrid‐Sevilla High‐Speed line. The prototype is experimentally validated under laboratory conditions. Finally, the performance of energy harvesting is evaluated from in situ experimental data measured by the authors. The results allow quantifying the energy harvested in a time window of five hours and twenty‐seven train passages. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 25097075
- Volume :
- 6
- Issue :
- 5
- Database :
- Complementary Index
- Journal :
- CE/Papers
- Publication Type :
- Academic Journal
- Accession number :
- 172332675
- Full Text :
- https://doi.org/10.1002/cepa.2070