Back to Search
Start Over
Capturing dynamical correlations using implicit neural representations.
- Source :
- Nature Communications; 9/20/2023, Vol. 14 Issue 1, p1-8, 8p
- Publication Year :
- 2023
-
Abstract
- Understanding the nature and origin of collective excitations in materials is of fundamental importance for unraveling the underlying physics of a many-body system. Excitation spectra are usually obtained by measuring the dynamical structure factor, S(Q, ω), using inelastic neutron or x-ray scattering techniques and are analyzed by comparing the experimental results against calculated predictions. We introduce a data-driven analysis tool which leverages 'neural implicit representations' that are specifically tailored for handling spectrographic measurements and are able to efficiently obtain unknown parameters from experimental data via automatic differentiation. In this work, we employ linear spin wave theory simulations to train a machine learning platform, enabling precise exchange parameter extraction from inelastic neutron scattering data on the square-lattice spin-1 antiferromagnet La<subscript>2</subscript>NiO<subscript>4</subscript>, showcasing a viable pathway towards automatic refinement of advanced models for ordered magnetic systems. Analysis of experimental data in condensed matter is often challenging due to system complexity and slow character of physical simulations. The authors propose a framework that combines machine learning with theoretical calculations to enable real-time analysis for electron, neutron, and x-ray spectroscopies. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 20411723
- Volume :
- 14
- Issue :
- 1
- Database :
- Complementary Index
- Journal :
- Nature Communications
- Publication Type :
- Academic Journal
- Accession number :
- 172040441
- Full Text :
- https://doi.org/10.1038/s41467-023-41378-4