Back to Search
Start Over
Temporal distribution model and occurrence probability of M ≥ 6.5 earthquakes in North China Seismic Zone.
- Source :
- Natural Hazards; Oct2023, Vol. 119 Issue 1, p125-141, 17p
- Publication Year :
- 2023
-
Abstract
- The temporal distribution of earthquakes provides important basis for earthquake prediction and seismic hazard analysis. The relatively limited records of strong earthquakes have often made it difficult to study the temporal distribution models of regional strong earthquakes. However, there are hundreds of years of complete strong earthquake records in the North China Seismic Zone, providing abundant basic data for studying temporal distribution models. Using the data of M ≥ 6.5 earthquakes in North China as inputs, this paper estimates the model parameters using the maximum likelihood method with Poisson, Gamma, Weibull, Lognormal and Brownian passage time (BPT) distributions as target models. The optimal model for describing the temporal distribution of earthquakes is determined according to Akaike information criterion (AIC),and Kolmogorov–Smirnov test (K–S test). The results show that Lognormal and BPT models perform better in describing the temporal distribution of strong earthquakes in North China. The mean recurrence periods of strong earthquakes (M ≥ 6.5) calculated based on these two models are 8.1 years and 13.2 years, respectively. In addition, we used the likelihood profile method to estimate the uncertainty of model parameters. For the BPT model, the mean and 95% confidence interval of recurrence interval μ is 13.2 (8.9–19.1) years, and the mean and 95% confidence interval of α is 1.29 (1.0–1.78). For the Lognormal model, the mean value and 95% confidence interval of v is 2.09 (1.68–2.49), the mean value exp (v) corresponding to earthquake recurrence interval is 8.1 (5.4–12.1) years. In this study, we also calculated the occurrence probability of M ≥ 6.5 earthquakes in the North China Seismic Zone in the future, and found that the probability and 95% confidence interval in the next 10 years based on the BPT model is 35.3% (26.8%-44.9%); the mean value and 95% confidence interval of earthquake occurrence probability based on the Lognormal distribution is 35.4% (22.9%-49.7%); the mean probability and 95% confidence interval based on the Poisson model is 53.1% (41.1%-64%). The results of this study may provide important reference for temporal distribution model selection and earthquake recurrence period calculation in future seismic hazard analysis in North China. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 0921030X
- Volume :
- 119
- Issue :
- 1
- Database :
- Complementary Index
- Journal :
- Natural Hazards
- Publication Type :
- Academic Journal
- Accession number :
- 171916981
- Full Text :
- https://doi.org/10.1007/s11069-023-06124-5