Back to Search Start Over

VHR-BirdPose: Vision Transformer-Based HRNet for Bird Pose Estimation with Attention Mechanism.

Authors :
He, Runang
Wang, Xiaomin
Chen, Huazhen
Liu, Chang
Source :
Electronics (2079-9292); Sep2023, Vol. 12 Issue 17, p3643, 14p
Publication Year :
2023

Abstract

Pose estimation plays a crucial role in recognizing and analyzing the postures, actions, and movements of humans and animals using computer vision and machine learning techniques. However, bird pose estimation encounters specific challenges, including bird diversity, posture variation, and the fine granularity of posture. To overcome these challenges, we propose VHR-BirdPose, a method that combines Vision Transformer (ViT) and Deep High-Resolution Network (HRNet) with an attention mechanism. VHR-BirdPose effectively extracts features using Vision Transformer's self-attention mechanism, which captures global dependencies in the images and allows for better capturing of pose details and changes. The attention mechanism is employed to enhance the focus on bird keypoints, improving the accuracy of pose estimation. By combining HRNet with Vision Transformer, our model can extract multi-scale features while maintaining high-resolution details and incorporating richer semantic information through the attention mechanism. This integration of HRNet and Vision Transformer leverages the advantages of both models, resulting in accurate and robust bird pose estimation. We conducted extensive experiments on the Animal Kingdom dataset to evaluate the performance of VHR-BirdPose. The results demonstrate that our proposed method achieves state-of-the-art performance in bird pose estimation. VHR-BirdPose based on bird images is of great significance for the advancement of bird behaviors, ecological understanding, and the protection of bird populations. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20799292
Volume :
12
Issue :
17
Database :
Complementary Index
Journal :
Electronics (2079-9292)
Publication Type :
Academic Journal
Accession number :
171857373
Full Text :
https://doi.org/10.3390/electronics12173643