Back to Search Start Over

Application of the Lock-In Technique in Magnetoelectric Coupling Measurements of the PZT/Terfenol-D Composite.

Authors :
Grotel, Jakub
Pikula, Tomasz
Mech, Rafał
Source :
Applied Sciences (2076-3417); Sep2023, Vol. 13 Issue 17, p9543, 11p
Publication Year :
2023

Abstract

This paper presents a study of magnetoelectric (ME) properties of the PZT/Terfenol-D composite with a varying number of layers. The composite consists of piezoelectric and magnetostrictive phases that are mechanically coupled. The purpose of this setup is to gain control over the electric polarization of a material via an external magnetic field. Unlike most similar composites, our samples utilize a commercial piezoelectric patch instead of pure PZT. At present, researchers face two main problems regarding magnetoelectric materials: (i) the effect is observed far below room temperature for single-phase materials, and (ii) the ME coupling is too weak to be commercially viable. Our research was carried out via the lock-in technique on two PZT/Terfenol-D samples we synthesized. Relatively strong room-temperature magnetoelectric coupling between piezoelectric and magnetostrictive phases was observed for both samples. Two types of characteristics were investigated: (i) ME voltage versus magnetic AC field frequency, and (ii) ME voltage versus magnetic DC field. We detected multiple, grouped signal peaks ascribed to different resonance modes. Uniquely, the peaks form band-like characteristics which might be an important step in bringing the materials closer to wider commercial use. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20763417
Volume :
13
Issue :
17
Database :
Complementary Index
Journal :
Applied Sciences (2076-3417)
Publication Type :
Academic Journal
Accession number :
171855023
Full Text :
https://doi.org/10.3390/app13179543