Back to Search
Start Over
Interior estimates of derivatives and a Liouville type theorem for parabolic $ k $-Hessian equations.
- Source :
- Communications on Pure & Applied Analysis; Aug2023, Vol. 22 Issue 8, p1-15, 15p
- Publication Year :
- 2023
-
Abstract
- In this paper, we establish the gradient and Pogorelov estimates for $ k $-convex-monotone solutions to parabolic $ k $-Hessian equations of the form $ -u_t\sigma_k(\lambda(D^2u)) = \psi(x, t, u) $. We also apply such estimates to obtain a Liouville type result, which states that any $ k $-convex-monotone and $ C^{4, 2} $ solution $ u $ to $ -u_t\sigma_k(\lambda(D^2u)) = 1 $ in $ \mathbb{R}^n\times(-\infty, 0] $ must be a linear function of $ t $ plus a quadratic polynomial of $ x $, under some growth assumptions on $ u $. [ABSTRACT FROM AUTHOR]
- Subjects :
- LIOUVILLE'S theorem
EQUATIONS
Subjects
Details
- Language :
- English
- ISSN :
- 15340392
- Volume :
- 22
- Issue :
- 8
- Database :
- Complementary Index
- Journal :
- Communications on Pure & Applied Analysis
- Publication Type :
- Academic Journal
- Accession number :
- 171590147
- Full Text :
- https://doi.org/10.3934/cpaa.2023073