Back to Search Start Over

Interior estimates of derivatives and a Liouville type theorem for parabolic $ k $-Hessian equations.

Authors :
Bao, Jiguang
Qiang, Jiechen
Tang, Zhongwei
Wang, Cong
Source :
Communications on Pure & Applied Analysis; Aug2023, Vol. 22 Issue 8, p1-15, 15p
Publication Year :
2023

Abstract

In this paper, we establish the gradient and Pogorelov estimates for $ k $-convex-monotone solutions to parabolic $ k $-Hessian equations of the form $ -u_t\sigma_k(\lambda(D^2u)) = \psi(x, t, u) $. We also apply such estimates to obtain a Liouville type result, which states that any $ k $-convex-monotone and $ C^{4, 2} $ solution $ u $ to $ -u_t\sigma_k(\lambda(D^2u)) = 1 $ in $ \mathbb{R}^n\times(-\infty, 0] $ must be a linear function of $ t $ plus a quadratic polynomial of $ x $, under some growth assumptions on $ u $. [ABSTRACT FROM AUTHOR]

Subjects

Subjects :
LIOUVILLE'S theorem
EQUATIONS

Details

Language :
English
ISSN :
15340392
Volume :
22
Issue :
8
Database :
Complementary Index
Journal :
Communications on Pure & Applied Analysis
Publication Type :
Academic Journal
Accession number :
171590147
Full Text :
https://doi.org/10.3934/cpaa.2023073