Cite
Examining longitudinal markers of bladder cancer recurrence through a semiautonomous machine learning system for quantifying specimen atypia from urine cytology.
MLA
Levy, Joshua J., et al. “Examining Longitudinal Markers of Bladder Cancer Recurrence through a Semiautonomous Machine Learning System for Quantifying Specimen Atypia from Urine Cytology.” Cancer Cytopathology, vol. 131, no. 9, Sept. 2023, pp. 561–73. EBSCOhost, https://doi.org/10.1002/cncy.22725.
APA
Levy, J. J., Chan, N., Marotti, J. D., Rodrigues, N. J., Ismail, A. A. O., Kerr, D. A., Gutmann, E. J., Glass, R. E., Dodge, C. P., Suriawinata, A. A., Christensen, B. C., Liu, X., & Vaickus, L. J. (2023). Examining longitudinal markers of bladder cancer recurrence through a semiautonomous machine learning system for quantifying specimen atypia from urine cytology. Cancer Cytopathology, 131(9), 561–573. https://doi.org/10.1002/cncy.22725
Chicago
Levy, Joshua J., Natt Chan, Jonathan D. Marotti, Nathalie J. Rodrigues, A. Aziz O. Ismail, Darcy A. Kerr, Edward J. Gutmann, et al. 2023. “Examining Longitudinal Markers of Bladder Cancer Recurrence through a Semiautonomous Machine Learning System for Quantifying Specimen Atypia from Urine Cytology.” Cancer Cytopathology 131 (9): 561–73. doi:10.1002/cncy.22725.