Back to Search Start Over

Structure-based design of a strain transcending AMA1-RON2L malaria vaccine.

Authors :
Patel, Palak N.
Dickey, Thayne H.
Diouf, Ababacar
Salinas, Nichole D.
McAleese, Holly
Ouahes, Tarik
Long, Carole A.
Miura, Kazutoyo
Lambert, Lynn E.
Tolia, Niraj H.
Source :
Nature Communications; 9/2/2023, Vol. 14 Issue 1, p1-16, 16p
Publication Year :
2023

Abstract

Apical membrane antigen 1 (AMA1) is a key malaria vaccine candidate and target of neutralizing antibodies. AMA1 binds to a loop in rhoptry neck protein 2 (RON2L) to form the moving junction during parasite invasion of host cells, and this complex is conserved among apicomplexan parasites. AMA1-RON2L complex immunization achieves higher growth inhibitory activity than AMA1 alone and protects mice against Plasmodium yoelii challenge. Here, three single-component AMA1-RON2L immunogens were designed that retain the structure of the two-component AMA1-RON2L complex: one structure-based design (SBD1) and two insertion fusions. All immunogens elicited high antibody titers with potent growth inhibitory activity, yet these antibodies did not block RON2L binding to AMA1. The SBD1 immunogen induced significantly more potent strain-transcending neutralizing antibody responses against diverse strains of Plasmodium falciparum than AMA1 or AMA1-RON2L complex vaccination. This indicates that SBD1 directs neutralizing antibody responses to strain-transcending epitopes in AMA1 that are independent of RON2L binding. This work underscores the importance of neutralization mechanisms that are distinct from RON2 blockade. The stable single-component SBD1 immunogen elicits potent strain-transcending protection that may drive the development of next-generation vaccines for improved malaria and apicomplexan parasite control. Here the authors use structure-based design to engineer a single component immunogen that mimics the malaria parasite AMA1-RON2 complex required for invasion of host cells, and show that it elicits a potent strain-transcending antibody response in rats. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20411723
Volume :
14
Issue :
1
Database :
Complementary Index
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
171347827
Full Text :
https://doi.org/10.1038/s41467-023-40878-7