Back to Search Start Over

Modulating Energy Among Foot-Ankle Complex With an Unpowered Exoskeleton Improves Human Walking Economy.

Authors :
Hu, Di
Xiong, Caihua
Wang, Tao
Zhou, Tiancheng
Liang, Jiejunyi
Li, Yuhao
Source :
IEEE Transactions on Neural Systems & Rehabilitation Engineering; 2022, Vol. 30, p1961-1970, 10p
Publication Year :
2022

Abstract

Over the course of both evolution and development, the human musculoskeletal system has been well shaped for the cushion function of the foot during foot-strike and the impulsive function of the ankle joint during push-off. Nevertheless, an efficient energy interaction between foot structure and ankle joint is still lacking in the human body itself, which may limit the further potential of economical walking. Here we showed the metabolic expenditure of walking can be lessened by an unpowered exoskeleton robot that modulates energy among the foot-ankle complex towards a more effective direction. The unpowered exoskeleton recycles negative mechanical energy of the foot that is normally dissipated in heel-strike, retains the stored energy before mid-stance, and then transfers the energy to the ankle joint to assist the push-off. The modulation process of the exoskeleton consumes no input energy, yet reduces the metabolic cost of walking by $8.19~\pm ~0.96$ % (mean ± s.e.m) for healthy subjects. The electromyography measurements demonstrate the activities of target ankle plantarflexors decreased significantly without added effort for the antagonistic muscle, suggesting the exoskeleton enhanced the subjects’ energy efficiency of the foot-ankle complex in a natural manner. Furthermore, the exoskeleton also provides cushion assistance for walking, which leads to significantly decreased activity of the quadriceps muscle during heel-strike. Rather than strengthening the functions of existing biological structures, developing the complementary energy loop that does not exist in the human body itself also shows its potential for gait assistance. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
15344320
Volume :
30
Database :
Complementary Index
Journal :
IEEE Transactions on Neural Systems & Rehabilitation Engineering
Publication Type :
Academic Journal
Accession number :
170416145
Full Text :
https://doi.org/10.1109/TNSRE.2022.3188870